The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005912 Truncated cube numbers. (Formerly M5312) 2

%I M5312

%S 1,56,311,920,2037,3816,6411,9976,14665,20632,28031,37016,47741,60360,

%T 75027,91896,111121,132856,157255,184472,214661,247976,284571,324600,

%U 368217,415576,466831,522136,581645,645512,713891,786936,864801,947640,1035607,1128856

%N Truncated cube numbers.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A005912/b005912.txt">Table of n, a(n) for n = 0..10000</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H B. K. Teo and N. J. A. Sloane, <a href="http://dx.doi.org/10.1021/ic00220a025">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985), 4545-4558.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).

%F a(n) = (3*n+1)^3-8*(n)*(n+1)*(n+2)/6=77/3*n^3+23*n^2+19/3*n+1.

%F a(0)=1, a(1)=56, a(2)=311, a(3)=920, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - _Harvey P. Dale_, Aug 14 2011

%p A005912:=(1+52*z+93*z**2+8*z**3)/(z-1)**4; # [Conjectured by _Simon Plouffe_ in his 1992 dissertation.]

%t Table[(3n+1)^3-8(n)(n+1)(n+2)/6,{n,0,30}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,56,311,920},30] (* _Harvey P. Dale_, Aug 14 2011 *)

%o a005912 n = (n * (n * (77 * n + 69) + 19) + 3) `div` 3 :: Integer

%o -- _Reinhard Zumkeller_, Aug 09 2014

%o (MAGMA) [(3*n+1)^3-8*(n)*(n+1)*(n+2)/6: n in [0..40]] // _Vincenzo Librandi_, Aug 09 2014

%o (PARI) a(n)=(3*n+1)^3-8*(n)*(n+1)*(n+2)/6 \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 19:29 EDT 2021. Contains 342941 sequences. (Running on oeis4.)