The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005911 Number of points on surface of truncated cube: 46n^2 + 2. (Formerly M5292) 1

%I M5292

%S 1,48,186,416,738,1152,1658,2256,2946,3728,4602,5568,6626,7776,9018,

%T 10352,11778,13296,14906,16608,18402,20288,22266,24336,26498,28752,

%U 31098,33536,36066,38688,41402,44208,47106,50096,53178,56352,59618,62976,66426,69968

%N Number of points on surface of truncated cube: 46n^2 + 2.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1).

%F a(0)=1, a(1)=48, a(2)=186, a(3)=416, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - _Harvey P. Dale_, Aug 19 2014

%p A005911:=-(z+1)*(z**2+44*z+1)/(z-1)**3; [Conjectured by _Simon Plouffe_ in his 1992 dissertation.]

%t Join[{1},Table[46n^2+2,{n,50}]] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{48,186,416},50]] (* _Harvey P. Dale_, Aug 19 2014 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Harvey P. Dale_, Aug 19 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 12:33 EDT 2020. Contains 336246 sequences. (Running on oeis4.)