

A003290


Number of nstep selfavoiding walks on hexagonal lattice from (0,0) to (0,2).
(Formerly M4119)


7



1, 6, 18, 50, 156, 508, 1724, 6018, 21440, 77632, 284706, 1055162, 3944956, 14858934, 56325420, 214698578, 822373244, 3163606784, 12217121138, 47343356398, 184038696776, 717456797490, 2804219712064, 10986639618642
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=2..25.
D. S. McKenzie, The endtoend length distribution of selfavoiding walks, J. Phys. A 6 (1973), 338352.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Cf. A001335, A003289, A003291, A005549, A005550, A005551, A005552, A005553.
Sequence in context: A179754 A086926 A328534 * A318160 A220227 A075650
Adjacent sequences: A003287 A003288 A003289 * A003291 A003292 A003293


KEYWORD

nonn,walk,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms and title improved by Sean A. Irvine, Feb 13 2016
a(23)a(25) from Bert Dobbelaere, Jan 15 2019


STATUS

approved



