

A003289


Number of nstep selfavoiding walks on hexagonal lattice from (0,0) to (0,1).
(Formerly M1229)


8



1, 2, 4, 10, 30, 98, 328, 1140, 4040, 14542, 53060, 195624, 727790, 2728450, 10296720, 39084190, 149115456, 571504686, 2199310460, 8494701152, 32919635606, 127961125094, 498775164568, 1949112527750, 7634623480172
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..25.
D. S. McKenzie, The endtoend length distribution of selfavoiding walks, J. Phys. A 6 (1973), 338352.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Equals A001335(n+1) / 6 for n > 1.
Cf. A003290, A003291, A005549, A005550, A005551, A005552, A005553.
Sequence in context: A273958 A149835 A149836 * A087161 A328358 A007558
Adjacent sequences: A003286 A003287 A003288 * A003290 A003291 A003292


KEYWORD

nonn,walk,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms and title improved by Sean A. Irvine, Feb 13 2016
a(23)a(24) from Bert Dobbelaere, Jan 03 2019
a(25) from Bert Dobbelaere, Jan 15 2019


STATUS

approved



