

A005550


Number of nstep selfavoiding walks on hexagonal lattice from (0,0) to (1,2).
(Formerly M3012)


7



3, 16, 57, 184, 601, 2036, 7072, 25088, 90503, 330836, 1222783, 4561058, 17145990, 64888020, 246995400, 944986464, 3631770111, 14013725268, 54268946152, 210842757798, 821569514032, 3209925357702, 12572219405144
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=3..25.
D. S. McKenzie, The endtoend length distribution of selfavoiding walks, J. Phys. A 6 (1973), 338352.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Cf. A001335, A003289, A003290, A003291, A005549, A005551, A005552, A005553.
Sequence in context: A173052 A027540 A099851 * A210323 A062474 A073999
Adjacent sequences: A005547 A005548 A005549 * A005551 A005552 A005553


KEYWORD

nonn,walk,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms and title improved by Sean A. Irvine, Feb 15 2016
a(23)a(25) from Bert Dobbelaere, Jan 15 2019


STATUS

approved



