

A003291


Number of nstep selfavoiding walks on hexagonal lattice from (0,0) to (1,1).
(Formerly M1613)


7



2, 6, 16, 46, 140, 464, 1580, 5538, 19804, 71884, 264204, 980778, 3671652, 13843808, 52519836, 200320878, 767688176, 2954410484, 11412815256, 44237340702, 171997272012, 670612394118, 2621415708492, 10271274034254
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=2..25.
D. S. McKenzie, The endtoend length distribution of selfavoiding walks, J. Phys. A 6 (1973), 338352.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Cf. A001335, A003289, A003290, A005549, A005550, A005551, A005552, A005553.
Sequence in context: A094039 A165431 A182267 * A148442 A190729 A071726
Adjacent sequences: A003288 A003289 A003290 * A003292 A003293 A003294


KEYWORD

nonn,walk,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms and title improved by Sean A. Irvine, Feb 14 2016
a(23)a(25) from Bert Dobbelaere, Jan 15 2019


STATUS

approved



