

A005549


Number of nstep selfavoiding walks on hexagonal lattice from (0,0) to (0,3).
(Formerly M4842)


7



1, 12, 54, 188, 636, 2168, 7556, 26826, 96724, 353390, 1305126, 4864450, 18272804, 69103526, 262871644, 1005137688, 3860909698, 14890903690, 57641869140, 223864731680
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,2


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=3..22.
D. S. McKenzie, The endtoend length distribution of selfavoiding walks, J. Phys. A 6 (1973), 338352.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Cf. A001335, A003289, A003290, A003291, A005550, A005551, A005552, A005553.
Sequence in context: A088941 A019582 A025204 * A124858 A183713 A126399
Adjacent sequences: A005546 A005547 A005548 * A005550 A005551 A005552


KEYWORD

nonn,walk,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms and improved title from Sean A. Irvine, Feb 14 2016


STATUS

approved



