|
|
A003293
|
|
Number of planar partitions of n decreasing across rows.
(Formerly M1058)
|
|
32
|
|
|
1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also number of planar partitions monotonically decreasing down antidiagonals (i.e., with b(n,k) <= b(n-1,k+1)). Transpose (to get planar partitions decreasing down columns), then take the conjugate of each row. - Franklin T. Adams-Watters, May 15 2006
Also number of partitions into one kind of 1's and 2's, two kinds of 3's and 4's, three kinds of 5's and 6's, etc. - Joerg Arndt, May 01 2013
Also count of semistandard Young tableaux with sum of entries equal to n (row sums of A228125). - Wouter Meeussen, Aug 11 2013
|
|
REFERENCES
|
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Nathaniel Johnston and Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Nathaniel Johnston)
M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp., 26 (1972), 999-1005.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
B. Gordon and L. Houten, Notes on Plane Partitions I, J. of Comb. Theory, 4 (1968), 72-80.
B. Gordon and L. Houten, Notes on Plane Partitions II, J. of Comb. Theory, 4 (1968), 81-99.
Basil Gordon and Lorne Houten, Notes on plane partitions III, (first page is available), Duke Math. J. Volume 36, Number 4 (1969), 801-824.
B. Gordon and L. Houten, Notes on Plane Partitions V, Journal of Combinatorial Theory, vol. 11, issue 2, 1971, p. 157-168.
B. Gordon and L. Houten, Notes on Plane Partitions VI, Discrete Mathematics, vol. 26, issue 1, 1979, p. 41-45.
Vaclav Kotesovec, Graph - asymptotic ratio for 10000 terms
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
Richard P. Stanley, Theory and Applications of Plane Partitions: Part 2, Studies in Appl. Math., 1 (1971), 259-279.
Richard P. Stanley, Theory and Application of Plane Partitions. Part 2, Studies in Appl. Math., 1 (1971), 259-279.
|
|
FORMULA
|
G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015
|
|
EXAMPLE
|
From Gus Wiseman, Jan 17 2019: (Start)
The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows):
6 51 42 411 33 321 3111 222 2211 21111 111111
.
5 4 41 31 32 311 22 221 2111
1 2 1 2 1 1 11 1 1
.
3
2
1
(End)
|
|
MAPLE
|
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n, 2)=0, n, n+1)/2): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
|
|
MATHEMATICA
|
CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]),
{k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]]
(* Jean-François Alcover, Apr 18 2011, after Michael Somos *)
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)
nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
|
|
PROG
|
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */
|
|
CROSSREFS
|
Cf. A005308, A005986.
Cf. A000085, A000219, A053529, A138178, A323432, A323436.
Sequence in context: A182746 A100482 A301762 * A192759 A289249 A094974
Adjacent sequences: A003290 A003291 A003292 * A003294 A003295 A003296
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from James A. Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000
|
|
STATUS
|
approved
|
|
|
|