

A001953


Floor((n + 1/2) * sqrt(2))
(Formerly M0543 N0193)


4



0, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Let s(n) = zeta(3)  sum{1/k^3, k = 1..n}. Conjecture: for n >=1, s(a(n)) < 1/n^2 < s(a(n)1), and the difference sequence of A049473 consists solely of 0s and 1, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively.  Clark Kimberling, Oct 05 2014


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181190


MATHEMATICA

Table[Floor[(n + 1/2) Sqrt[2]], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)


PROG

(PARI) a(n)=floor((n+1/2)*sqrt(2))


CROSSREFS

Complement of A001954.
Sequence in context: A186275 A214857 A175320 * A230748 A078607 A292043
Adjacent sequences: A001950 A001951 A001952 * A001954 A001955 A001956


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Michael Somos, Apr 26, 2000.


STATUS

approved



