login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001952 A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).
(Formerly M2534 N1001)
43
3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, 54, 58, 61, 64, 68, 71, 75, 78, 81, 85, 88, 92, 95, 99, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 139, 143, 146, 150, 153, 157, 160, 163, 167, 170, 174, 177, 180, 184, 187, 191, 194, 198 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It appears that the distance between the a(n)-th triangular number and the nearest square is greater than floor(a(n)/2). - Ralf Stephan, Sep 14 2013

A080764(a(n)) = 0. - Reinhard Zumkeller, Jul 03 2015

REFERENCES

Fraenkel, Aviezri S., On the recurrence f(m+1)=b(m)f(m)-f(m-1) and applications. Discrete Math. 224 (2000), no. 1-3, 273-279.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77.

Wen An Liu and Xiao Zhao, Adjoining to (s,t)-Wythoff's game its P-positions as moves, Discrete Applied Mathematics, Aug 27 2014; DOI: 10.1016/j.dam.2014.08.009. See Table 3.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

L. Carlitz, R. Scoville and V. E. Hoggatt, Jr. Pellian representatives, Fibonacci Quarterly, 10, issue 5, 1972, 449-488.

Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190

J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8

A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=2).

Eric Weisstein's World of Mathematics, Beatty Sequence.

Index entries for sequences related to Beatty sequences

MATHEMATICA

Table[Floor[n*(2 + Sqrt[2])], {n, 60}] (* Stefan Steinerberger, Apr 15 2006 *)

Array[Floor[#(2+Sqrt[2])]&, 60] (* Harvey P. Dale, Dec 01 2015 *)

PROG

(Haskell)

a001952 = floor . (* (sqrt 2 + 2)) . fromIntegral

-- Reinhard Zumkeller, Jul 03 2015

(PARI) a(n)=2*n+sqrtint(2*n^2) \\ Charles R Greathouse IV, Jan 05 2016

CROSSREFS

Complement of A001951; equals A001951(n)+2*n.

A bisection of A094077.

Cf. A026250, A080764.

Sequence in context: A190007 A310052 A310053 * A189795 A145383 A258834

Adjacent sequences:  A001949 A001950 A001951 * A001953 A001954 A001955

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 03:52 EST 2018. Contains 318141 sequences. (Running on oeis4.)