login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001954 Wythoff game.
(Formerly M3774 N1539)
4
1, 5, 8, 11, 15, 18, 22, 25, 29, 32, 35, 39, 42, 46, 49, 52, 56, 59, 63, 66, 69, 73, 76, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 124, 128, 131, 134, 138, 141, 145, 148, 151, 155, 158, 162, 165, 169, 172, 175, 179, 182, 186, 189, 192, 196, 199 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Winning positions in the 2-Wythoff game, the u-pile in Connell's nomenclature; v-pile numbers in A001953.

Let s(n) = zeta(3) - sum{1/k^3, k = 1..n}.  Conjecture:  for n >=1, s(a(n)) < 1/n^2 < s(a(n)-1), and the difference sequence of A049473 consists solely of 0s and 1, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively.  - Clark Kimberling, Oct 05 2014

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190

J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8

FORMULA

a(n) = floor[(n+1/2)*(2+sqrt(2))].

MATHEMATICA

Table[Floor[(n + 1/2) (2 + Sqrt[2])], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)

PROG

(PARI) a(n)=floor((n+1/2)*(2+sqrt(2)))

CROSSREFS

Complement of A001953. Bisection of A003152.

Sequence in context: A186238 A314389 A118520 * A006620 A176628 A314390

Adjacent sequences:  A001951 A001952 A001953 * A001955 A001956 A001957

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Michael Somos, Apr 26 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:16 EDT 2019. Contains 328292 sequences. (Running on oeis4.)