This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001702 Generalized Stirling numbers. (Formerly M5148 N2234) 2
 1, 24, 154, 580, 1665, 4025, 8624, 16884, 30810, 53130, 87450, 138424, 211939, 315315, 457520, 649400, 903924, 1236444, 1664970, 2210460, 2897125, 3752749, 4809024, 6101900, 7671950, 9564750, 11831274, 14528304, 17718855, 21472615, 25866400, 30984624 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres reliés aux nombres de Stirling. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy] Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. FORMULA a(n) = (1/48)*(n-1)*n*(n+1)*(n+4)*(n^2+7n+14), n > 1. G.f.: x + x^2*(x-4)*(x^2-2*x+6)/(x-1)^7. - Simon Plouffe in his 1992 dissertation If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-1) = -f(n,n-3,2), for n >= 3. - Milan Janjic, Dec 20 2008 MAPLE A001702 := proc(n)     if n = 1 then         1 ;     else         (n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48 ;     end if; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA Join[{1}, Table[(n-1) n (n+1) (n+4) (n^2 + 7 n + 14)/48, {n, 2, 100}]] (* T. D. Noe, Aug 09 2012 *) CoefficientList[Series[1 +x*(x-4)*(x^2-2*x+6)/(x-1)^7, {x, 0, 100}], x] (* Stefano Spezia, Sep 30 2018 *) Join[{1}, Table[Coefficient[Product[x + j, {j, 2, k}], x, k - 4], {k, 4, 40}]]  (* or *)  Join[{1}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {24, 154, 580, 1665, 4025, 8624, 16884}, 40]] (* Robert A. Russell, Oct 04 2018 *) PROG (GAP) Concatenation([1], List([2..35], n->(n-1)*n*(n+1)*(n+4)*(n^2+7*n+14)/48)); # Muniru A Asiru, Sep 29 2018 (MAGMA) [1] cat [n*(n^2-1)*(n+4)*(n^2+7*n+14)/48: n in [2..35]]; // Vincenzo Librandi, Sep 30 2018 (PARI) vector(50, n, if(n==1, 1, (1/48)*(n-1)*n* (n+1)* (n+4)*(n^2 +7*n +14))) \\G. C. Greubel, Oct 06 2018 CROSSREFS For n > 1, a(n) = A145324(n+2,4). Sequence in context: A305160 A279459 A092181 * A004308 A008663 A277984 Adjacent sequences:  A001699 A001700 A001701 * A001703 A001704 A001705 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)