login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001703 Decimal concatenation of n, n+1, and n+2. 8
12, 123, 234, 345, 456, 567, 678, 789, 8910, 91011, 101112, 111213, 121314, 131415, 141516, 151617, 161718, 171819, 181920, 192021, 202122, 212223, 222324, 232425, 242526, 252627, 262728, 272829, 282930, 293031, 303132, 313233, 323334, 333435, 343536, 353637, 363738 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

All terms are divisible by 3. Every third term starting with a(2) is divisible by 9. - Alonso del Arte, May 27 2013

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = (n-1)*10^floor[log10(b)+1]+b, with b=n*10^floor[log10(n+1)+1]+n+1 and n>=1. - Paolo P. Lava, Aug 04 2008

The portion of the sequence with all three numbers having d digits - i.e., n in 10^(d-1)..10^d-3 - is in arithmetic sequence: a(n) = (10^(2*d)+10^d+1)*n + (10^d+2). - Franklin T. Adams-Watters, Oct 07 2011

EXAMPLE

a(8) = 8910 since the three consecutive numbers starting with 8 are 8, 9, 10, and these concatenate to 8910. (This is the first term that differs from A193431).

MAPLE

P:=proc(i) local a, b, c, n; for n from 1 by 1 to i do b:=n*10^evalf(floor(log10(n+1)+1))+n+1; a:=floor((n-1)*10^evalf(floor(log10(b)+1))+b); print(a); od; end: P(1000); # Paolo P. Lava, Aug 04 2008

read(transforms) :

A001703 := proc(n)

    digcatL([n, n+1, n+2]) ;

end proc:

seq(A001703(n), n=1..20) ; # R. J. Mathar, Mar 29 2017

# Third Maple program:

a:= n-> parse(cat(n, n+1, n+2)):

seq(a(n), n=0..50); # Alois P. Heinz, Mar 29 2017

MATHEMATICA

concat3Nums[n_] := FromDigits@ Flatten@ IntegerDigits[{n, n + 1, n + 2}]; Array[concat3Nums, 25] (* Robert G. Wilson v *)

PROG

(PARI) a(n)=eval(Str(n, n+1, n+2)) \\ Charles R Greathouse IV, Oct 08 2011

(Python) for n in range(100): print(int(str(n)+str(n+1)+str(n+2))) # David F. Marrs, Sep 18 2018

CROSSREFS

Cf. A074991.

For concatenations of exactly k consecutive integers see A000027 (k=1), A127421 (k=2), A279204 (k=4). For 2 or more see A035333.

See also A127422, A127423, A127424.

Sequence in context: A078189 A278982 A167208 * A127422 A278983 A079847

Adjacent sequences:  A001700 A001701 A001702 * A001704 A001705 A001706

KEYWORD

nonn,base,easy

AUTHOR

mag(AT)laurel.salles.entpe.fr

EXTENSIONS

Initial term 12 added and offset changed to 0 at the suggestion of R. J. Mathar. - N. J. A. Sloane, Mar 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 10:49 EST 2019. Contains 320372 sequences. (Running on oeis4.)