login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092181 Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}). 8
1, 24, 153, 544, 1425, 3096, 5929, 10368, 16929, 26200, 38841, 55584, 77233, 104664, 138825, 180736, 231489, 292248, 364249, 448800, 547281, 661144, 791913, 941184, 1110625, 1301976, 1517049, 1757728, 2025969, 2323800, 2653321, 3016704 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is the 4-dimensional regular convex polytope called the 24-cell, hyperdiamond or icositetrachoron.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.

Eric Weisstein's World of Mathematics, 24-Cell

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). [R. J. Mathar, Jun 21 2010]

FORMULA

a(n) = n^2*((3*n^2)-(4*n)+2).

a(n) = C(n+3,4) + 19 C(n+2,4) + 43 C(n+1,4) + 9 C(n,4).

a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+19*x+43*x^2+9*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]

EXAMPLE

a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153

MATHEMATICA

Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* Michael De Vlieger, Dec 14 2015 *)

PROG

(MAGMA) [n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // Vincenzo Librandi, May 22 2011

(PARI) a(n) = n^2*(3*n^2-4*n+2); \\ Michel Marcus, Dec 14 2015

CROSSREFS

Cf. A000332, A000583, A014820, A092182, A092183.

Sequence in context: A159650 A305160 A279459 * A001702 A004308 A008663

Adjacent sequences:  A092178 A092179 A092180 * A092182 A092183 A092184

KEYWORD

easy,nonn

AUTHOR

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:17 EDT 2018. Contains 316304 sequences. (Running on oeis4.)