This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001551 a(n) = 1^n + 2^n + 3^n + 4^n. (Formerly M3397 N1375) 7
 4, 10, 30, 100, 354, 1300, 4890, 18700, 72354, 282340, 1108650, 4373500, 17312754, 68711380, 273234810, 1088123500, 4338079554, 17309140420, 69107159370, 276040692700, 1102999460754, 4408508961460, 17623571298330, 70462895745100, 281757423024354 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS From Wolfdieter Lang, Oct 10 2011: (Start) a(n) = 2*A196836, n >= 0. a(n)*(-1)^n, n >= 0, gives the z-sequence of the Sheffer triangle A049459 ((signed) 4-restricted Stirling1) which is the inverse Sheffer triangle of A143496 with offset [0,0](4-restricted Stirling2). See the W. Lang link under A006232 for general Sheffer a- and z-sequences. The a-sequence of every (signed) r-restricted Stirling1 number Sheffer triangle is A027641/A027642 (Bernoulli numbers). (End) REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..200 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 364 C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. FORMULA From Wolfdieter Lang, Oct 10 2011: (Start) E.g.f.: (1-exp(4*x))/(exp(-x)-1) = Sum_{j=1..4} exp(j*x) (trivial). O.g.f.: 2*(2-5*x)*(1-5*x+5*x^2)/(product(1-j*x,j=1..4) (via Laplace transformation of the o.g.f., and partial fraction decomposition backwards). See the Maple Program for the o.g.f. conjecture by Simon Plouffe. This has now been proved. (End) MAPLE A001551:=-2*(5*z-2)*(5*z**2-5*z+1)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA Table[Total[Range[4]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *) PROG (Sage) [3^n+sigma(4, n)for n in xrange(0, 23)] # Zerinvary Lajos, Jun 04 2009 CROSSREFS Column 4 of array A103438. Sequence in context: A047088 A114946 A243793 * A067142 A145453 A264564 Adjacent sequences:  A001548 A001549 A001550 * A001552 A001553 A001554 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 10:41 EDT 2018. Contains 304560 sequences. (Running on oeis4.)