The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145453 Exponential transform of binomial(n,3) = A000292(n-2). 4
 1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 3 balls are seen at the top. a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 3 labels. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..530 (terms 0..200 from Alois P. Heinz) N. J. A. Sloane, Transforms FORMULA E.g.f.: exp(exp(x)*x^3/3!). MAPLE a:= proc(n) option remember; `if`(n=0, 1,       add(binomial(n-1, j-1) *binomial(j, 3) *a(n-j), j=1..n))     end: seq(a(n), n=0..30); MATHEMATICA Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *) CROSSREFS 3rd column of A145460, A143398. Cf. A292889, A292910. Sequence in context: A243793 A001551 A067142 * A333916 A264564 A304963 Adjacent sequences:  A145450 A145451 A145452 * A145454 A145455 A145456 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 22:22 EDT 2020. Contains 336403 sequences. (Running on oeis4.)