|
|
A067142
|
|
One half of the number of Young tableaux with n cells whose shape is asymmetric.
|
|
2
|
|
|
0, 0, 1, 1, 4, 10, 30, 106, 316, 1254, 4140, 17128, 63856, 271492, 1126216, 4936608, 22278712, 101330506, 487735440, 2313734596, 11706759352, 58073844300, 305941244576, 1587272257096, 8656011151184, 46886237603400, 263791190603200, 1487539434072976
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Equivalently, the row lengths are a non-self-conjugate partition of n.
|
|
LINKS
|
Table of n, a(n) for n=0..27.
|
|
FORMULA
|
a(n) = (A000085(n) - A067136(n))/2.
a(n) = A330645(n)/2. - Omar E. Pol, Jan 11 2020
|
|
EXAMPLE
|
a(4) = 4 = 8/2; the 8 tableaux are:
1..1234..123..124..134..14..12..13
2........4....3....2....2...3...2.
3.......................3...4...4.
4.................................
The two tableaux of size 4 with symmetric shape are excluded:
12..13
34..24
|
|
CROSSREFS
|
Cf. A000085, A000700, A000701, A067136, A330645.
Sequence in context: A114946 A243793 A001551 * A145453 A346754 A333916
Adjacent sequences: A067139 A067140 A067141 * A067143 A067144 A067145
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Naohiro Nomoto, Feb 19 2002
|
|
EXTENSIONS
|
Edited by Franklin T. Adams-Watters, Nov 07 2006
a(26)-a(27) from Omar E. Pol, Jan 11 2020
|
|
STATUS
|
approved
|
|
|
|