login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049459
Generalized Stirling number triangle of first kind.
9
1, -4, 1, 20, -9, 1, -120, 74, -15, 1, 840, -638, 179, -22, 1, -6720, 5944, -2070, 355, -30, 1, 60480, -60216, 24574, -5265, 625, -39, 1, -604800, 662640, -305956, 77224, -11515, 1015, -49, 1, 6652800, -7893840, 4028156, -1155420, 203889
OFFSET
0,2
COMMENTS
a(n,m)= ^4P_n^m in the notation of the given reference with a(0,0) := 1.
The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(4+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(4*t),exp(t)-1).
See A143493 for the unsigned version of this array and A143496 for the inverse. - Peter Bala, Aug 25 2008
REFERENCES
Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
LINKS
FORMULA
a(n, m)= a(n-1, m-1) - (n+3)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n<m; a(n, -1) := 0, a(0, 0)=1. E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^4).
Triangle (signed) = [ -4, -1, -5, -2, -6, -3, -7, -4, -8, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [4, 1, 5, 2, 6, 3, 7, 4, 8, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938 (unsigned version in A143493).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,4), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
EXAMPLE
1;
-4, 1;
20, -9, 1;
-120, 74, -15, 1;
840, -638, 179, -22, 1;
MAPLE
A049459_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x+4, n)), x, k), k=0..n): seq(print(A049459_row(n)), n=0..8); # Peter Luschny, May 16 2013
MATHEMATICA
a[n_, m_] /; 0 <= m <= n := a[n, m] = a[n-1, m-1] - (n+3)*a[n-1, m];
a[n_, m_] /; n < m = 0;
a[_, -1] = 0; a[0, 0] = 1;
Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
PROG
(Haskell)
a049459 n k = a049459_tabl !! n !! k
a049459_row n = a049459_tabl !! n
a049459_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 4)
-- Reinhard Zumkeller, Mar 11 2014
CROSSREFS
Unsigned column sequences are: A001715-A001719. Cf. A008275 (Stirling1 triangle), A049458, A049460. Row sums (signed triangle): A001710(n+2)*(-1)^n. Row sums (unsigned triangle): A001720(n+4).
A143493, A143496. - Peter Bala, Aug 25 2008
Sequence in context: A201639 A078939 A135891 * A143493 A062137 A143497
KEYWORD
sign,easy,tabl
EXTENSIONS
Second formula corrected by Philippe Deléham, Nov 09 2008
STATUS
approved