OFFSET
0,2
COMMENTS
a(n,m)= ^4P_n^m in the notation of the given reference with a(0,0) := 1.
The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(4+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(4*t),exp(t)-1).
See A143493 for the unsigned version of this array and A143496 for the inverse. - Peter Bala, Aug 25 2008
REFERENCES
Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
FORMULA
a(n, m)= a(n-1, m-1) - (n+3)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n<m; a(n, -1) := 0, a(0, 0)=1. E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^4).
Triangle (signed) = [ -4, -1, -5, -2, -6, -3, -7, -4, -8, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [4, 1, 5, 2, 6, 3, 7, 4, 8, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938 (unsigned version in A143493).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,4), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
EXAMPLE
1;
-4, 1;
20, -9, 1;
-120, 74, -15, 1;
840, -638, 179, -22, 1;
MAPLE
A049459_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x+4, n)), x, k), k=0..n): seq(print(A049459_row(n)), n=0..8); # Peter Luschny, May 16 2013
MATHEMATICA
a[n_, m_] /; 0 <= m <= n := a[n, m] = a[n-1, m-1] - (n+3)*a[n-1, m];
a[n_, m_] /; n < m = 0;
a[_, -1] = 0; a[0, 0] = 1;
Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
PROG
(Haskell)
a049459 n k = a049459_tabl !! n !! k
a049459_row n = a049459_tabl !! n
a049459_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 4)
-- Reinhard Zumkeller, Mar 11 2014
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Second formula corrected by Philippe Deléham, Nov 09 2008
STATUS
approved