login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001719 Generalized Stirling numbers.
(Formerly M5212 N2266)
4
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The asymptotic expansion of the higher order exponential integral E(x,m=5,n=4) ~ exp(-x)/x^5*(1 - 30/x + 625/x^2 - 11515/x^3 + 203889/x^4 - ... ) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).

FORMULA

E.g.f.: (log(1-x)/(1-x))^4/24. - Vladeta Jovovic, May 05 2003

a(n) = sum((-1)^(n+k)*binomial(k+4, 4)*4^k*stirling1(n+4, k+4), k=0..n). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-4) = |f(n,4,4)|, for n>=4. - Milan Janjic, Dec 21 2008

MATHEMATICA

nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)

PROG

(PARI) a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016

CROSSREFS

Cf. A000254, A001706, A001713.

Sequence in context: A124099 A028258 A075911 * A004359 A001777 A205828

Adjacent sequences:  A001716 A001717 A001718 * A001720 A001721 A001722

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, May 05 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 16:36 EDT 2017. Contains 284177 sequences.