login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000598 Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.
(Formerly M1146 N0436 N1341)
39
1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of unlabeled rooted trees in which each node has out-degree <= 3.

Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.

In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.

Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.

The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012

REFERENCES

A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (No. 4, 1988), 304-313.

N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).

A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).

J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.

R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.

J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.

Handbook of Combinatorics, North-Holland '95, p. 1963.

H. R. Henze and C. M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Amer. Chem. Soc., 53 (1931), 3042-3046.

Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.

Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.

G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2.

G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.

R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 20, Eq. (G); p. 27, Eq. 2.1.

R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes..., Tetrahedron 32 (1976), 355-361.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-39O, 1983.

K. Grützmann, S. Böcker, S. Schuster, Combinatorics of aliphatic amino acids, Naturwissenschaften, Vol. 98, No. 1, 79-86, 2011

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..200

Jean-François Alcover, Mathematica program translated from N. J. A. Sloane's Maple program for A000022, A000200, A000598, A000602, A000678

Frederic Chyzak, Enumerating alcohols and other classes of chemical molecules

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 478

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1

N. J. A. Sloane, Maple program and first 60 terms for A000022, A000200, A000598, A000602, A000678

Wikipedia, Polya's enumeration theorem

Index entries for sequences related to rooted trees

Index entries for sequences related to trees

FORMULA

G.f. A(x) satisfies A(x) = 1+(1/6)*x*(A(x)^3+3*A(x)*A(x^2)+2*A(x^3)).

MAPLE

N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2, G000598)*G000598/2+subs(z=z^3, G000598)/3)+O(z^(N+1)), z, N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598, z, n);

[Another Maple program for g.f. G000598] G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2, G000598)+2*subs(x=x^3, G000598)), x, n+1), x, n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n, x, n+1); od; G000598;

spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];

MATHEMATICA

m = 45; For[s = 0; i = 0, i < m+1, i++, s = Series[1 + z*(s^3/6 + (s /. z -> z^2)*s/2 + (s /. z -> z^3)/3), {z, 0, m+1}] // Normal]; CoefficientList[s, z] // Most (* Jean-François Alcover, Sep 23 2014, after Maple *)

CROSSREFS

Cf. A000599, A000600, A000602, A000625, A000628, A000678, A010372, A010373, A086194, A086200.

Sequence in context: A241671 A036375 A036376 * A003008 A185352 A054199

Adjacent sequences:  A000595 A000596 A000597 * A000599 A000600 A000601

KEYWORD

nonn,easy,nice,eigen

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 20 14:23 EDT 2014. Contains 248338 sequences.