login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010372 Number of unrooted quartic trees with n (unlabeled) nodes and possessing a centroid; number of n-carbon alkanes C(n)H(2n +2) with a centroid ignoring stereoisomers. 7
1, 0, 1, 1, 3, 2, 9, 8, 35, 39, 159, 202, 802, 1078, 4347, 6354, 24894, 38157, 148284, 237541, 910726, 1511717, 5731580, 9816092, 36797588, 64658432, 240215803, 431987953, 1590507121, 2917928218, 10660307791, 19910436898 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The degree of each node is <= 4.

A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.

Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086194 for the analogous sequence with stereoisomers counted.

REFERENCES

F. Harary, Graph Theory, p. 36, for definition of centroid.

LINKS

Table of n, a(n) for n=1..32.

A. Cayley, Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen, Chem. Ber. 8 (1875), 1056-1059. (Annotated scanned copy)

E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)., J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.

Index entries for sequences related to trees

MAPLE

with(combstruct): Alkyl := proc(n) combstruct[count]([ U, {U=Prod(Z, Set(U, card<=3))}, unlabeled ], size=n) end:

centeredHC := proc(n) option remember; local f, k, z, f2, f3, f4; f := 1 + add(Alkyl(k)*z^k, k=0..iquo(n-1, 2));

f2 := series(subs(z=z^2, f), z, n+1); f3 := series(subs(z=z^3, f), z, n+1); f4 := series(subs(z=z^4, f), z, n+1);

f := series(f*f3/3+f4/4+f2^2/8+f2*f^2/4+f^4/24, z, n+1); coeff(f, z, n-1) end: seq(centeredHC(n), n=1..32);

CROSSREFS

Cf. A010373, A000022, A086194, A000598, A000602.

A000602(n) = a(n) + A010373(n/2) for n even, A000602(n) = a(n) for n odd.

Sequence in context: A288055 A081233 A050676 * A199455 A287768 A197831

Adjacent sequences:  A010369 A010370 A010371 * A010373 A010374 A010375

KEYWORD

nonn,easy,nice

AUTHOR

Paul Zimmermann, N. J. A. Sloane

EXTENSIONS

Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:18 EST 2019. Contains 329914 sequences. (Running on oeis4.)