login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000574 Coefficient of x^5 in expansion of (1 + x + x^2)^n.
(Formerly M3011 N1219)
12
3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

If Y is a 3-subset of an n-set X then, for n>=7, a(n-4) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..1000

L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Trinomial Coefficient

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: x^3*(3-2*x)/(1-x)^6.

a(n) = 3*binomial(n+2,5) - 2*binomial(n+1,5).

a(n) = A111808(n,5) for n>4. - Reinhard Zumkeller, Aug 17 2005

a(n) = binomial(n+1, 4)*(n+12)/5 = 3*b(n-3)-2*b(n-4), with b(n)=binomial(n+5, 5); cf. A000389.

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Jun 10 2012

a(n) = 3*binomial(n, 3) + 4*binomial(n, 4) + binomial(n, 5). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

a(n) = GegenbauerC(N, -n, -1/2) where N = 5 if 5<n else 2*n-5. - Peter Luschny, May 10 2016

a(n) = Sum_{i=1..n-1} A000217(i)*A055998(n-1-i). - Bruno Berselli, Mar 05 2018

MAPLE

A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation

seq(3*binomial(n+2, 5)-2*binomial(n+1, 5), n=3..100); # Robert Israel, Aug 04 2015

A000574 := n -> GegenbauerC(`if`(5<n, 5, 2*n-5), -n, -1/2):

seq(simplify(A000574(n)), n=3..20); # Peter Luschny, May 10 2016

MATHEMATICA

CoefficientList[Series[(3-2*x)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 10 2012 *)

PROG

(MAGMA) [3*Binomial(n+2, 5)-2*Binomial(n+1, 5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012

(PARI) x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017

CROSSREFS

Cf. A005581, A005712, A005714-A005716, A111808.

Column m=5 of (1, 3) Pascal triangle A095660.

Cf. A000217, A055998.

Sequence in context: A222843 A004320 A089363 * A041233 A055194 A190730

Adjacent sequences:  A000571 A000572 A000573 * A000575 A000576 A000577

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, Oct 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 03:29 EST 2018. Contains 317224 sequences. (Running on oeis4.)