OFFSET
0,1
COMMENTS
This is the third member, q=3, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with T(0,0)=2, not 1).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column nr. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} T(n,m)*x^m is G(z,x) = g(z)/(1-x*z*f(z)). Here: g(x) = (3-2*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (3-2*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} T(n-1-k,k) = A000285(n-2), n>=2, with n=1 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Central terms: T(2*n,n) = A028329(n) = A100320(n) for n > 0, A028329 are the central terms of triangle A028326. - Reinhard Zumkeller, Apr 08 2012
Let P be Pascal's triangle, A007318 and R the Riordan array, A097805. Then Pascal triangle (1,q) = ((q-1) * R) + P. Example: Pascal triangle (1,3) = (2 * R) + P. - Gary W. Adamson, Sep 12 2015
LINKS
Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
W. Lang, First 10 rows.
FORMULA
Recursion: T(n, m)=0 if m>n, T(0, 0)= 3; T(n, 0)=1 if n>=1; T(n, m) = T(n-1, m) + T(n-1, m-1).
G.f. column m (without leading zeros): (3-2*x)/(1-x)^(m+1), m>=0.
T(n,k) = (1+2*k/n) * binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
EXAMPLE
Triangle starts:
3;
1, 3;
1, 4, 3;
1, 5, 7, 3;
1, 6, 12, 10, 3;
1, 7, 18, 22, 13, 3;
1, 8, 25, 40, 35, 16, 3;
1, 9, 33, 65, 75, 51, 19, 3;
1, 10, 42, 98, 140, 126, 70, 22, 3;
1, 11, 52, 140, 238, 266, 196, 92, 25, 3;
1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3;
1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
MAPLE
T(n, k):=piecewise(n=0, 3, 0<n, (1+2*k/n)*binomial(n, k)): # Mircea Merca, Apr 08 2012
MATHEMATICA
{3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
PROG
(Haskell)
a095660 n k = a095660_tabl !! n !! k
a095660_row n = a095660_tabl !! n
a095660_tabl = [3] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1, 3]
-- Reinhard Zumkeller, Apr 08 2012
(Magma) A095660:= func< n, k | n eq 0 select 3 else (1+2*k/n)*Binomial(n, k) >;
[A095660(n, k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
(Sage)
def A095660(n, k): return 3 if n==0 else (1+2*k/n)*binomial(n, k)
flatten([[A095660(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, May 21 2004
STATUS
approved