login
A306841
Number of rectangles of integer sides whose area or perimeter is n.
4
1, 1, 1, 3, 1, 3, 1, 4, 2, 4, 1, 6, 1, 5, 2, 7, 1, 7, 1, 8, 2, 7, 1, 10, 2, 8, 2, 10, 1, 11, 1, 11, 2, 10, 2, 14, 1, 11, 2, 14, 1, 14, 1, 14, 3, 13, 1, 17, 2, 15, 2, 16, 1, 17, 2, 18, 2, 16, 1, 21, 1, 17, 3, 20, 2, 20, 1, 20, 2, 21, 1, 24, 1, 20, 3, 22, 2, 23
OFFSET
1,4
FORMULA
a(n) = ceiling(d(n)/2) + floor(n/4) if n is even, a(n) = ceiling(d(n)/2) otherwise, where d(n) is the number of divisors of n.
EXAMPLE
a(4) = 3 because there are two rectangles of integer sides of area 4 (2 X 2 and 1 X 4) and one rectangle of integer sides of perimeter 4 (1 X 1).
CROSSREFS
Cf. A038548 (area n), A004526 (perimeter 2n).
Sequence in context: A274473 A280526 A335552 * A095660 A290080 A289617
KEYWORD
nonn
AUTHOR
Freddy Barrera, Mar 12 2019
STATUS
approved