OFFSET
3,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..1000
R. K. Guy, Letter to N. J. A. Sloane, 1987
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Trinomial Coefficient
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = binomial(n, 3)*(n^3+18*n^2+17*n-120) /120.
G.f.: (x^3)*(1+3*x-4*x^2+x^3)/(1-x)^7. (Numerator polynomial is N3(6, x) from A063420).
a(n) = A027907(n, 6), n >= 3 (seventh column of trinomial coefficients).
a(n) = A111808(n,6) for n>5. - Reinhard Zumkeller, Aug 17 2005
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,3) + 6*binomial(n,4) + 5*binomial(n,5) + binomial(n,6) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 6 if 6<n else 2*n-6. - Peter Luschny, May 10 2016
E.g.f.: exp(x)*x^3*(120 + 180*x + 30*x^2 + x^3)/720. - Stefano Spezia, Mar 28 2023
MAPLE
A005714:=-(1+3*z-4*z**2+z**3)/(z-1)**7; # Conjectured by Simon Plouffe in his 1992 dissertation.
A005714 := n -> GegenbauerC(`if`(6<n, 6, 2*n-6), -n, -1/2):
seq(simplify(A005714(n)), n=3..20); # Peter Luschny, May 10 2016
MATHEMATICA
a[n_] := Coefficient[(1 + x + x^2)^n, x, 6]; Table[a[n], {n, 3, 35}]
CoefficientList[Series[(1+3*x-4*x^2+x^3)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 16 2012 *)
PROG
(Magma) I:=[1, 10, 45, 141, 357, 784, 1554]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
(Magma) /* By definition: */ P<x>:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[7]: n in [3..35] ]; // Bruno Berselli, Jun 17 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Oct 02 2000
STATUS
approved