login
A000093
a(n) = floor(n^(3/2)).
(Formerly M1344 N0515)
44
0, 1, 2, 5, 8, 11, 14, 18, 22, 27, 31, 36, 41, 46, 52, 58, 64, 70, 76, 82, 89, 96, 103, 110, 117, 125, 132, 140, 148, 156, 164, 172, 181, 189, 198, 207, 216, 225, 234, 243, 252, 262, 272, 281, 291, 301, 311, 322, 332, 343, 353, 364, 374, 385, 396, 407, 419, 430
OFFSET
0,3
REFERENCES
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Christian G. Bower, Table of n, a(n) for n=0..500
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
FORMULA
a(n) = A077121(n) - 1. [Reinhard Zumkeller, Oct 31 2009]
a(n) = floor(n*sqrt(n)). [Arkadiusz Wesolowski, Jun 01 2011]
a(n) = A000196(A000578(n)) = A074704(n)+n*A000196(n). [Reinhard Zumkeller, Jun 27 2011]
MAPLE
Digits := 100: A000093 := n->floor(evalf(n^(3/2)));
MATHEMATICA
Table[ Floor[ Sqrt[n^3]], {n, 0, 60}]
PROG
(PARI) a(n)=if(n<0, 0, sqrtint(n^3))
(Haskell)
a000093 = a000196 . a000578 -- Reinhard Zumkeller, Jul 11 2014
(Python)
from math import isqrt
def A000093(n): return isqrt(n**3) # Chai Wah Wu, Sep 08 2024
CROSSREFS
Integer part of square root of n^k: A000196 (k=1), this sequence (k=3), A155013 (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), A155019 (k=17).
Cf. A002821.
Cf. A185549.
Sequence in context: A192585 A344162 A163516 * A324476 A070214 A330031
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, May 04 2000
STATUS
approved