

A163516


a(n) = floor( Sum_{x=2..n} x/log(x) ).


1



0, 2, 5, 8, 11, 14, 18, 22, 26, 30, 35, 40, 45, 50, 56, 61, 67, 74, 80, 87, 94, 101, 108, 116, 123, 131, 140, 148, 157, 165, 175, 184, 193, 203, 213, 223, 233, 243, 254, 265, 276, 287, 299, 310, 322, 334, 346, 359, 371, 384, 397, 410, 424, 437, 451, 465, 479, 493
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) closely approximates the number of primes < n^2, that is A038107(n) = Pi(n^2).
In fact, the sum is as good as Li(n^2). For n = 10^9,
a(n) = 24739954333817884.
Pi(n^2) = 24739954287740860 = A006880(18).
Li(n^2) = 24739954309690415 = A057754(18) = A089896(18).
R(n^2) = 24739954284239494 = A057793(18).
Now x/(log(x)1) is a much better approximation of Pi(x) than x/log(x).
10^18/(log(10^18)1)=24723998785919976 and 10^18/log(10^18)=24127471216847323.
Ironically though, a(n) = sum(x=2,n,x/(log(x)1) is way off Pi(n^2), see A058290.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000


FORMULA

a(10^n) = A163521(n).


EXAMPLE

For n = 10, floor(sum(x=2,n,x/log(x))) = 30, the 10th entry.


MATHEMATICA

Table[Floor[Sum[j/Log[j], {j, 2, n}]], {n, 1, 50}] (* G. C. Greubel, Jul 27 2017 *)


PROG

(PARI) nthsum(n) = for(j=1, n, print1(floor(sum(x=2, j, x/log(x)))", "));


CROSSREFS

Sequence in context: A135677 A192585 A172262 * A000093 A324476 A070214
Adjacent sequences: A163513 A163514 A163515 * A163517 A163518 A163519


KEYWORD

nonn


AUTHOR

Cino Hilliard, Jul 30 2009


EXTENSIONS

Offset corrected, definition detailed, 7 references to other sequences added by R. J. Mathar, Aug 29 2009


STATUS

approved



