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STATISTICAL MECHANICS AND PARTITIONS INTO
NON-INTEGRAL POWERS O INTEGERS

By B. K. AGARWALA axp F. C. AULUCK
Communicated by R. Al Ravkiv
Received 28 November 1949 and in revised form 14 August 1950

1. The problem of the partition of numbers, first investigated in detail by Hardy
and Ramanujan (1), has in recent years assumed importance on account of its applica-
tion by Bohr and Kalckar (2) in evaluating the density of energy levels in ieavy nuclei.
A ‘physical approach’ to the partition theory has been made by Auluck and Kothari(3),
who have studied the properties of quantal statistical assemblies corresponding to the
partition functions familiar in the theory of numbers. The thermodynamical approach
to the partition theory, apart from its intrinsic intevest, draws attention to aspects
and generalizations of the partition problem that would, otherwise, perhaps go un-
noticed. Thus we are led to consider restricted partitions such as: partitions where the
summands are repeated not more than a specified number of times: partitions where
the summands are all different; partitions into summands which must not be less than
a specified value; partitions into a prescribed number of sunmands. and so on. The
generalization that seemed to us to be the most interesting is the extension of the
partition concept to include partitions into non-integral powers of integers. The
problem is then to count the number of solutions satisfving the equation

ai'-i—gé"ﬁ ag+...<q,
where 1ga, <a,<ay....
q is the integer to be partitioned and o is a positive number not necessarily integral.
The number of solutions in the above case is denoted by ¢(g; o). 1n the case where the

summands are all different, i.e. )
’ I<a, <ug<dy ...,

the number of solutions is denoted by ¢*(g; o). The partition functionst p(q; o) and
p*(g; o) which enumerate the partitious of ¢ into oth powers of integers are then given

by plg; o) = clg; o)y—cly—1; o), } ‘ )

pHg; o) = ¢¥(q; 0) =g~ 1; 0).
The appropriate thermodginamic assembly corresponding to the above partition
functions is one oheving Bose-Finstein or Fermi-Divac statistics and containing an
indefinite pumber of similar particles, the energy levels of any individual particle

being given by ) &
2 & . €, =ar’ (r= 1,2,3,...),

t It will, of course, be noted that we use here the term partition function as it is used in the
theory of nurbers. This is not to he confused with the use of the term in statistical mechanics,
whero it signifies the sum taken suitably over the states of tho assembly.
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where 2 is a constant of the dimensions of eneray, In the present note, the assembly
is restricted in the sense that the total number of particles is a fixed{ number 2. The
relevant partition functions in the Fermi-Dirac and Bose-Einstein cases are then
P#(q; o) and p,(q; o), where the former enumerates the partitions of ¢ into » different
summands and the latter the partitions of ¢ into n or less summands with repetitions
allowed. We find 1 '
Pi(q; o) ~ex plrr VG7) n *‘1‘“">}

wi pigoressornfLr{is )( N e
I

With the approximate method developed here one cannot obtain the multiplier of the
exponential expressions for the partition functions correctly. ¢, in the formula for
P*(q; o) denotes the excitation energy of the Iermi-Dirac assembly and is given by

nlte
=0+
Tt is striking that for o = 1 we obtain
1) = p,(11), (2)
where g =qy+ns

Tor o> 1, P¥q; o) <p,(q,; o) and for o < 1, P¥(q; o) > p,(q;; &) and the two are equal
only in the limiting case of o = 1. The equality (2) is shown to hold in the analytical
theory also. It is also noticeable that the exponential term in the expression for
p,(q; o) is the same as that for p(g; o). It has been shown that in the Bose case which
is characterized by n> ¢ the function p,(g; o) tends to p(q; o).

2. We proceed to evaluate the relevant thermodynamic functions. We consider a
‘particle’ the nuwmber of states of which lving between the encrgies ¢ and ¢ +de is
1 " (= L=

given by a(c)de = Bertde, (3)
where B and p are constants and p = 1. The distribution law for an assembly composed
of such ‘particles’ is given by ale) de
n(e)de = T ,
Y T+ p
where 7'is the temperature (in energy units) of the assembly, # = — 1 for Bosc-Einstein

statistics and # = + 1 for Fermi-Dirac statistics. The parameter 4 is independent of
¢ and is a function of the total number of particles in the assembly.

We shall first consider the Bose-Einstein degenerate case. Ior this case 4 =
and we have for the total energy of the assembly the expression

1
B = B[ 55 = BI T+ ) Lo+ ) (4)
The entropy S of the assembly is given by
_etls 5
- P mn (‘))

1 The case of the unrestricted partitions is taken in §4.

i a1 8 e B

TEEIeLE |

Eliminating 7' betw e

Consider now the e

energy 4 is given by

Making use of Sommei

o

1
0o 4

-

wr du

-H+E

where w, = log A and

Tor the total number «f

From the above

where

g = ke

Substituting for u, i

=

~

For the free energy [

so that the entropy 5 |

!

B

the higher order tern
stituting the value ol

¥

The first term in (1) i
With .

the assembly.
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Eliminating 7' between (4) and (p) we have

+1 o :
S = 3,‘7 L BT (p+ 1) {p + WP+ BP0, (6)
Consider now the Fermi-Dirac degenerate case which is characterized by A3 L The
energy [ is given by o yrdu
E = BTr+t T———-—-
—et+1
0 A

Making use of Sommerfeld’s Lemma (4) according to which for large y: |

© ufdu uftt | mp(p+1) 7t (p+l)p(p—1)(p——2)
= e a0 S A |
AP 0 - 0
o <
where 1, = log 4 and the error is of the order of 1/4, we have
N p+1 2 4 1
I = T i L o1, (1)
p+1 \ 6 up J

For the total number of systems in the assembly we have

W~Up+my

6 up

1!0

= BTr—={1+ -
P

From the above
1y = log A = (p+])A“/ﬂ{

T
o e 8
Al B’l“”l‘(p) ( )

Substituting for ug in (7) we have, after a little algebra,

where

m? p+1 }
— { A4 lip R e —
B p+ nTL(/)Jrl 1}[{116{1"[)4—1 Wer (9)
Tor the free energy I we have
- pn'T 1,p[1 m  ptl }
F ot {]—‘f"*“l Ay} \ b{F/H- A‘~l‘+"' ,

so that the entropy S 18 given by

E-F n° np

il e 10)
= 3 (Dpt D Ape (10

the higher or der terms being neﬂwxblc when we consider tl
stituting the value of A, from (8) n (1) we finally have

1e case for large 7. Sub-

S = % =1 e BYe T, (11)

The first term in (V) s independent of 7' and hence represents the zero-point encrgy of
the assembly. With 4, given by (3) the zero-point energy 15

/nl Fip
— P p, (12)

1{’0 f+] BHp
14

psP 47, 1
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i
The second term in (9) which gives the excitation eneroy reduces to I N
) - Also
9 I7al 9
2 pn'l T i i 1 P .
g, = e (=1 ph (1=1/p) PRI pr12 R .
# 6 {I'p+1)d,}7 6 r " el : (13) i In the accompanyin
T : : 2 (q¢; or ¢ = 10 ax
Eliminating 7' between (11) and (13) we have P(g; o) for q \
W dat s G chosen, namely, o -
S 1 “/(EEI) nAI—HpKIIn B, (14) y maximum value, and
The expressions (6) and (14) for the entropy will he used later. |

3. The connecting link between thermodynamies and partition theory is provided
by Bethe’s theorem (5) which connects the number of accessible wave functions of an
assembly in the energy state £ with the entropy S of the assembly according to the
relation

eS . {
w(ll) = g (15) I
— 2772~
( 2nT FT) , i

The considerations outlined in § 2 can be adapted to the partition problem if we con- ,
template the energy levels of the individual particles of the assembly to be deseribed by ! =

g =oar” (r=1,23,..),

where o is a positive number, not necessarily integral, and « is a constant of the f
. dimensions of energy. We then have 1‘
‘ } -1l \
a(cyde = dr = a—o_—-e““f)"”, (16) '
and the total energy of the assembly is |'
B =Y nle)u° (16"
or = (€.) ‘
: =g = S nlc)r.
2 q .; n r
An integer ¢ has thus heca partitioned in oth powers of integers. _
A comparison between equations (3) and (16) gives (
1 P i
==, B=L, 17
p=-, o (17) |
With these values of p and B equations (6) and (14) become ,_
1 1 1\|otetn ! -
S = (0—}-1)[»— 1‘(1+~)((1+—)] yteth (B case) (18—) ) «
o (o T [
and S = o~in¥t=o7(2g ) (F.D. case). (18+)
i y . nlto
The relation (9) becomes q=q,+ Tro (19)

In a Bose-Einstein degenerate assembly the number of accessible wave functions is

: l istri herefore for r>¢'. °
enumerated by the number of ways in which ¢ encrgy quanta can be distributed among Th q

— e e

n systems, no restriction being placed on the number assigned to any system. This we have
enumeration for the partitions (167) is identical with the [unction Pp.,(¢; 0) s0 that we
have from (15) and (18 —) and therefore
‘ : xpl iyt l‘(l 1) 5(1 L BT e 20 g iy
Pn(q,ff)wxpl(m )Lr ‘ Tg)\ \ .0)_‘ q } (20) so that Pl




e

N ISR o

In the accompanying graphs we have plotted t
P(g; o) forq= 10 and_for values ofre

chosen, namely, 0 = 1 and o = B B
alues for r greater than ¢! the

maximum value, and for v
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plq; o) = 2 Bl 7)

Also .
r=1

he enumerated values of the function
anging from 110 10. Two values of o have been
s evident that for r~¢* the function has its
function falls off very rapidly.

1000}
800

600

P (g 0)

20

i) 10

6

PP

0 2 4

Therefore for 7> qt, which condition is fulfilled in the Bose-Rinstein degenerate case,

we have n a
> Pla; o) ‘lPr(fJ; o),
r—

r=1

and thercfore JNUE o) = (1 o),

B! 1 1\]oio D
so that plg; o)~ exp t(g +1) [5 T (1 + 5:) §(1 + c—rﬂ q]f("ﬂ)‘ .
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This is identical with the Hardy-Ramanujan expression for p(q; o). This case therefore
Jeads to no new result. It must be emphasized that the method developed here is only
approximate and cannot vield any multiplier of the exponential part of the partition
function.

In Fermi-Dirac statistics we have to impose the restriction that the number of quanta
attached to different particles must all be different. The number of accessible wave
functions will then be equivalent to the partition function P#(y; o), so that (15)
and (18+) give

Pi(g; o) ~exp Gyt~ [o)k. (21)
For o =1
Also from (20)

Pilg; o) ~exp {m (G}
p. ()~ exp{m §/ (G},
i) = palqu), (22)
with q = q; -5t | (23)

so that we arve led to the result

To compare the relative maugnitudes of the functions P¥(q: o) and p,(q; o) for values
of & other than unity, we note thav
(4y; 7) 1 1y, ] Yol
log 2l %) g4 )| =T {1+=¢ 1+—) Gt (gt o)t 24
g, and n are large quantities and may be assumed to be of the same order of magnitude,
ie. g, ~n = K.

The relative magnitude of the two terms on the right in (24) is then given by

1 11“ . 1\ . . 1\ |7+ N
el i) e

I .
i - ~ R-&'f(a—l),((f+1)_
Cy m(3gn'0)o) :

c

For o> 1: C—1>1 or p,(q; 0)> g o).
2

¢ )
Foro<l: Al or pulg o)<Iilg o).
In the limiting case of o=1, ¢ ~Cy
and 2,(q0) = Pi@).

This equality can be shown to hold goocl in the analytical theory also.
Tor this we note that P¥%(g) is the coefficient of ar—irte=lin
1
Ao (= (=) (")’

Also p,(q,) is the coefficient of x% in

1
(0—z)(1—2%) (1 2y L (1 =ty
I P = p.1),
then the coefficient of 2= in
1

A=z (1 —2%) (1 —a8) ... (1 =)
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st be equal to the coefficient of % In
1
(1—x) (! —a) (1 —2%) ... (1—a")’
<0 that we should have the relation
(25)

q—in(n+1) =14

(23) and (25) are not materially different in the case we are considering,

The conditions
asymptotic In character.

since all the formulae are
First we note that for integral values
xpression for plg; o)

1 \We now come to anrestricted partitions.

Hardy and Ramanujan (1) obtained the asymptotic ¢
. o \! L e . )
plg; o) = @M~ (&'I;fl) f-tveesp o+ 1) AR (26)

1 1 \ Jerfor4-1)
where ﬂ = [E_l‘ (1 + o:) ' (1 L i_.\‘] . (27)

The correiponding expression for pE(g: o) has been given by Auluck and Kothari (6):

1 : po \!
EX =i ) 2—1 o\bor+D L ( —}(20’-{-])"(0’41)
p*(q; 0) Mﬂ( ) (a+1) q

. 1 oflo+1) . \
x exp ‘(ff +1) (1 - :{ﬁ,) ﬁq1.-<a+1>] ' (28)

method outlined in the present paper it can readily be ghown that
even for the case of non-integral @ ghe exponential terms for p(q; o) and p*(q; o) are
As already remarked the method of the

identical with (26) and (28) 1'05})ccti\'ely.
tent to determine ihe multiplying factor to the exponential

terms. However, the conjecture may be permissible that the asymptotic expressions
(26) and (28) will hold for non-integral powers of 0.

have carried oub the enumeration of the partitions for two
o for values of ¢ up to 10. Table 1 gives the

powers 0 = Jand 0 =3
of the function Colds O) which denotes the number of solutions

By following the
present paper is not compe

As an ustration we
non-integral
enumemt-ed values
satisfying

S a‘{+ag+...+w‘,{éq,

.<a,are any % positive integers.
pumber 15, for example, corresponding to ¢
e solations of the equation

where 1 <, <@ S -
_ 5andn = 2for the

Tn Table 1 (1) the

value 0 = represents all possibl

af +ui <9,

where 1<a, <.
he partitions are denoted by

d to be all different t
able 2 for the same ¥ alues

If the gummands are Tequire
ase are tabulated in i

CE(q; o) and the enumerations in this ¢

of ¢ and 0.
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% j / able 1 —
1,
¢ e
} q
93 vY tS? I {
\” L2 | 3 | 4 (\s /6 | 7]|8]09]10 * 2
q9 | \ .
. ! = e SR | 3
1 1 ! ’ 1
2 2 1 | { 3
2 5 2 1 | ! 5 i
4 | 8| 7 2 ] [ l 7
5 | 11 | 15 8 2 1 | . 8
6 | 14 | 28 | 19 8 2 1 ¢ 0
T 18 | 45 |41 20 | 8 | 2 J &
8 22 70 78 | 48 22 8 | 2 1 )
9 27 | 100 | 134 99 52 | 22 | 8 2 1
10 31 | 138 218 | 186 | 111 |53 | 22 8 2 1
J / (ii) /=()/ i
338 245 247 (24 /D |
n ==
T 1 2 s |y \sj 6 7 8 | 9 | 10 3
. N\ ' [ !
1 1 { :
2 4 1 ; 2
3 9 5 1 i e - 3 |
4 16 18 5 i , ’ 4 |
5 | o5 | 45 | 22 5 1 5 |
. 6 36 | 100 71 24 5 1 1 ) 6
i 7 49 185 186 84 24 5 1 | 7 {
| 8 64 | 328 | 427 | 251 90 | 24 5 1 I 8 |
{ 9 81 | 522 | 888 | 653 | 288 92 | 24 5 | 1 9
; 10| 100 | 804 | 1704 | 1543 | 811 | 306 | 93 | 24 | 5 | 1 { 10 \
i

{
Table 2 {
q
( -
/f:yl"'v 0 avég /—Y |
V ] 3%6 o
| " 1 2 w 4 1 2
i 7 "
| | ;
i 1 1 5 |
. 2 2
6 i
! 3 5 1 T 2 |
{ 4 8 5 '
| 0 ] ‘,
' 5 11 12 1 g |
6 14 23 5 o
| 7 18 39 16 _ 1
r 3 22 62 38 3 } o
. 9 27 0] 74 12 ( In Table 2 (i)
e 10 31 127133 33 \ zero. Similarly ¢
[\
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l/ 2 (i) o=}
n : i-_-i
1 2 |
2 l
1 1 ‘
] 4
. 3 9 3 1
‘ 4 16 14 |
5 25 39
l 6 36 91
7 49 173
L8 64 307 |
\ 9 81 502 |
10 100 | 779 | 1337
) — e
/ Table 3 J
Q) oc=7% o
_ 234 J32
clg; o) l o*g; o) \
q __‘_____——-—-_'4— _— s —
Enumerated (alculated \ Jonumerated Caleulated
1 1 0 1 0
2 3 32 2 2-2
3 8 9-7 6 6-9
4 18 22:3 13 12-9
5 37 45-8 24 246
6 72 388:6 42 44-0
7 136 164-3 73 76-0
8 951 295-2 125 1270
9 445 517-4 204 2074
10 770 891-3 324 331-3
. =rabs e
(i) o =13
,_,_ﬂ_j}?,,/,_,,?ﬂi_/ B
c(g; o) ¢*(g; 0) ‘
q -
Enumerated | Calculated Enumerated Calculated
I [l — e
1 1 0 1 0
2 5 52 4 3-3
3 15 17-6 12 11-1
4 40 50-8 30 29-1
5 98 122-1 70 72:0
6 237 282-2 159 1548
7 534 630-6 339 3338
8 1135 1403-0 706 6942
9 2554 l 2997-0 1436 11640
10 5301 \ 6201-0 2853 9787-0
__4’_________.___—”—-_—'_——__—'—_._.._._._7 . -

In Table 2 (i) the pa
sero. Similarly in Table

i i hava Sl A

Liitions of g for any values up to 10 in
2 (i) the maximum value of nis 5.
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For these enumerated values the functions e(q; o) and ¢*(7; o) which as defined in
§1 are given by

I] 8
elg; o) = _.A‘e;lﬁ",(q; o)

q
and My, o) = X Cig; o)

—
r=1

are easily found and are given in Table 5.
In the tables under the columus caleulated we have given the values of the integrals

, \
lg; o) = f Dl o)z,

. (29)
o*(g; o) = J pH(@; o) da,
1

evaluated numerically. the values of p(g; o) and p*(q; o) being given by (26) and (28).
The agreement between the values calculated
by actual enumeration is satisfactory.t

according to (29) and the values obtained

Our thanks are due to Prof. D. S. Koth

ari for his interest and guidance during the
course of this work,

T It may also be noted that the agreement hetween the ealeulated
of ¢*(¢; o) (Fermi-Dirac asscmnblies) is better than that in the
assemblies). In a recent paper Temperley (7) has shown that there is considerable doubt about
the validity of the method of steepest descent when applied to Bose-Einstein assemblics, but no
such difficulty seems to exist with Fermi-Dirac assemblics,

and enwmerated values
case of e(g; o) (Bose-Kinstein
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