login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088539
Decimal expansion of (4K/Pi)^2 where K is the Landau-Ramanujan constant.
14
9, 4, 6, 8, 0, 6, 4, 0, 7, 1, 8, 0, 0, 7, 9, 3, 3, 4, 2, 1, 6, 0, 9, 4, 4, 1, 3, 1, 0, 9, 7, 5, 6, 2, 3, 3, 2, 5, 0, 0, 6, 9, 5, 0, 2, 6, 4, 7, 1, 6, 5, 3, 1, 2, 1, 8, 1, 9, 7, 9, 5, 6, 5, 5, 3, 5, 8, 2, 0, 1, 0, 6, 6, 3, 9, 3, 6, 3, 7, 9, 2, 8, 1, 3, 9, 8, 9, 1, 3, 3, 0, 0, 4, 9, 9, 6, 2, 6, 0, 5, 2, 3, 4, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100
LINKS
W. Bosma and P. Stevenhagen, Density computations for real quadratic units, Math. comp. 65 (1996), 1327-1337; MR 96j : 11171.
FORMULA
Equals prod(1-1/p^2) where p runs through the primes p==1 mod 4
A088539 * A243379 = 8 / Pi^2. - Vaclav Kotesovec, Apr 30 2020
Equals 1/A175647. - Vaclav Kotesovec, May 05 2020
EXAMPLE
0.9468064071800793342160944131097562332500695...
MATHEMATICA
digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1-2^(-2^n)) * Zeta[2^n] / DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5]; (4*LandauRamanujanK/Pi)^2 // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, updated Mar 14 2018 *)
CROSSREFS
Sequence in context: A309610 A198989 A255013 * A245084 A199054 A131109
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Nov 16 2003
STATUS
approved