login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085237
Nondecreasing gaps between primes.
5
1, 2, 2, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 8, 14, 14, 14, 18, 20, 22, 34, 34, 36, 36, 36, 44, 52, 52, 72, 86, 86, 96, 112, 114, 118, 132, 132, 148, 154, 154, 154, 180, 210, 220, 222, 234, 248, 250, 250, 282, 288, 292, 320, 336, 336, 354, 382, 384, 394, 456, 464, 468, 474, 486, 490, 500, 514, 516, 532, 534, 540, 582, 588, 602, 652, 674, 716, 766, 778
OFFSET
1,2
COMMENTS
All terms of A005250 are in the sequence, but some terms of A005250 appear in this sequence more than once.
a(n) is the gap between the n-th and (n+1)-th sublists of prime numbers defined in A348178. - Ya-Ping Lu, Oct 19 2021
REFERENCES
R. K. Guy, Unsolved problems in number theory.
EXAMPLE
a(21) = a(22) = 34 because prime(218) - prime(217) = prime(1060) - prime(1059) = 34 and prime(n+1) - prime(n) is less than 34, for n < 1059 and n not equal to 217.
MATHEMATICA
f[n_] := Prime[n+1]-Prime[n]; v={}; Do[ If[f[n]>=If[n==1, 1, v[[ -1]]], v1=n; v=Append[v, f[v1]]; Print[v]], {n, 105000000}]
DeleteDuplicates[Differences[Prime[Range[10^7]]], Greater] (* Harvey P. Dale, Jan 17 2024 *)
PROG
(Python)
from sympy import nextprime; p, r = 2, 0
while r < 778:
q = nextprime(p); g = q - p
if g >= r: print(g, end = ', '); r = g
p = q # Ya-Ping Lu, Jan 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Aug 11 2003
EXTENSIONS
a(53)-a(63) from Donovan Johnson, Nov 24 2008
a(64)-a(76) from Charles R Greathouse IV, May 09 2011
a(77)-a(79) from Charles R Greathouse IV, May 19 2011
STATUS
approved