login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006343
Arkons: number of elementary maps with n-1 nodes.
(Formerly M3400)
13
1, 0, 1, 1, 4, 10, 34, 112, 398, 1443, 5387, 20482, 79177, 310102, 1228187, 4910413, 19792582, 80343445, 328159601, 1347699906, 5561774999, 23052871229, 95926831442, 400587408251, 1678251696379, 7051768702245, 29710764875014
OFFSET
0,5
REFERENCES
K. Appel and W. Haken, Every planar map is four colorable. With the collaboration of J. Koch. Contemporary Mathematics, 98. American Mathematical Society, Providence, RI, 1989. xvi+741 pp. ISBN: 0-8218-5103-9.
F. R. Bernhart, Topics in Graph Theory Related to the Five Color Conjecture. Ph.D. Dissertation, Kansas State Univ., 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
F. R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
F. R. Bernhart and N. J. A. Sloane, Correspondence, 1977.
F. R. Bernhart and N. J. A. Sloane, Emails, April-May 1994.
G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60, (1946). 355-451.
FORMULA
a(n-1) = Sum (n-k-1)^(-1)*binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2); k = 0..[ (n-2)/2 ], n >= 3.
From Peter Bala, Jun 22 2015: (Start)
O.g.f. A(x) equals 1/x * series reversion ( x/(1 + x^2*C(x)) ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108.
A(x) is an algebraic function satisfying x^3*A^3(x) - (x - 1)*A^2(x) + (x - 2)*A(x) + 1 = 0. (End)
a(n) ~ sqrt(s*(1 - s + 3*r^2*s^2) / (1 - r + 3*r^3*s)) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.2229935155751761877673240243525445951244491757706... and s = 1.116796494086474135831052534637944909439048671327... are real roots of the system of equations 1 + (r-2)*s + r^3*s^3 = (r-1)*s^2, r + 2*s + 3*r^3*s^2 = 2 + 2*r*s. - Vaclav Kotesovec, Nov 27 2017
Conjecture: D-finite with recurrence: -(n+3)*(n-1)*a(n) +(11*n^2-2*n-45)*a(n-1) -(37*n+29)*(n-3)*a(n-2) +(29*n^2-125*n+78)*a(n-3) +(61*n-106)*(n-3)*a(n-4) -155*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 20 2020
MAPLE
A006343:=n->add(binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2)/(n-k-1), k=0..(n-2)/2): (1, seq(A006343(n), n=1..30)); # Wesley Ivan Hurt, Jun 22 2015
MATHEMATICA
a[n_] := Sum[ Binomial[n, k]*Binomial[2*n-3*k-4, n-2*k-2]/(n-k-1), {k, 0, (n-2)/2}]; a[0] = 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Dec 14 2012, from formula *)
PROG
(Haskell)
a006343 0 = 1
a006343 n = sum $ zipWith div
(zipWith (*) (map (a007318 n) ks)
(map (\k -> a007318 (2*n - 3*k - 4) (n - 2*k - 2)) ks))
(map (toInteger . (n - 1 -)) ks)
where ks = [0 .. (n - 2) `div` 2]
-- Reinhard Zumkeller, Aug 23 2012
CROSSREFS
KEYWORD
easy,nonn,nice
EXTENSIONS
Erroneously duplicated term 4 removed per Frank Bernhart's report by Max Alekseyev, Feb 11 2010
STATUS
approved