OFFSET
0,5
REFERENCES
K. Appel and W. Haken, Every planar map is four colorable. With the collaboration of J. Koch. Contemporary Mathematics, 98. American Mathematical Society, Providence, RI, 1989. xvi+741 pp. ISBN: 0-8218-5103-9.
F. R. Bernhart, Topics in Graph Theory Related to the Five Color Conjecture. Ph.D. Dissertation, Kansas State Univ., 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
F. R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
F. R. Bernhart and N. J. A. Sloane, Correspondence, 1977.
F. R. Bernhart and N. J. A. Sloane, Emails, April-May 1994.
G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60, (1946). 355-451.
FORMULA
a(n-1) = Sum (n-k-1)^(-1)*binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2); k = 0..[ (n-2)/2 ], n >= 3.
From Peter Bala, Jun 22 2015: (Start)
O.g.f. A(x) equals 1/x * series reversion ( x/(1 + x^2*C(x)) ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108.
A(x) is an algebraic function satisfying x^3*A^3(x) - (x - 1)*A^2(x) + (x - 2)*A(x) + 1 = 0. (End)
a(n) ~ sqrt(s*(1 - s + 3*r^2*s^2) / (1 - r + 3*r^3*s)) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.2229935155751761877673240243525445951244491757706... and s = 1.116796494086474135831052534637944909439048671327... are real roots of the system of equations 1 + (r-2)*s + r^3*s^3 = (r-1)*s^2, r + 2*s + 3*r^3*s^2 = 2 + 2*r*s. - Vaclav Kotesovec, Nov 27 2017
Conjecture: D-finite with recurrence: -(n+3)*(n-1)*a(n) +(11*n^2-2*n-45)*a(n-1) -(37*n+29)*(n-3)*a(n-2) +(29*n^2-125*n+78)*a(n-3) +(61*n-106)*(n-3)*a(n-4) -155*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 20 2020
MAPLE
A006343:=n->add(binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2)/(n-k-1), k=0..(n-2)/2): (1, seq(A006343(n), n=1..30)); # Wesley Ivan Hurt, Jun 22 2015
MATHEMATICA
a[n_] := Sum[ Binomial[n, k]*Binomial[2*n-3*k-4, n-2*k-2]/(n-k-1), {k, 0, (n-2)/2}]; a[0] = 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Dec 14 2012, from formula *)
PROG
(Haskell)
a006343 0 = 1
a006343 n = sum $ zipWith div
(zipWith (*) (map (a007318 n) ks)
(map (\k -> a007318 (2*n - 3*k - 4) (n - 2*k - 2)) ks))
(map (toInteger . (n - 1 -)) ks)
where ks = [0 .. (n - 2) `div` 2]
-- Reinhard Zumkeller, Aug 23 2012
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
Erroneously duplicated term 4 removed per Frank Bernhart's report by Max Alekseyev, Feb 11 2010
STATUS
approved