login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283070
Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.
3
4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
OFFSET
0,1
COMMENTS
Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.
LINKS
Eric Weisstein's World of Mathematics, Independence Number
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
Eric Weisstein's World of Mathematics, Tetrix
Eric Weisstein's World of Mathematics, Vertex Count
FORMULA
G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017
MATHEMATICA
Table[2 4^n + 2, {n, 0, 30}] (* Bruno Berselli, Feb 28 2017 *)
2 (4^Range[0, 20] + 1) (* Eric W. Weisstein, Aug 17 2017 *)
LinearRecurrence[{5, -4}, {4, 10}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
PROG
(PARI) a(n)=2*4^n+2 \\ Charles R Greathouse IV, Feb 28 2017
(PARI) Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
(Python)
def a(n): return 2*4**n + 2
print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 29 2021
CROSSREFS
Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).
Sequence in context: A006343 A149173 A149174 * A222631 A030003 A339845
KEYWORD
nonn,easy
AUTHOR
Peter M. Chema, Feb 28 2017
EXTENSIONS
Entry revised by Editors of OEIS, Mar 01 2017
STATUS
approved