OFFSET
0,1
COMMENTS
Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Independence Number
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
Eric Weisstein's World of Mathematics, Tetrix
Eric Weisstein's World of Mathematics, Vertex Count
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
MATHEMATICA
Table[2 4^n + 2, {n, 0, 30}] (* Bruno Berselli, Feb 28 2017 *)
2 (4^Range[0, 20] + 1) (* Eric W. Weisstein, Aug 17 2017 *)
LinearRecurrence[{5, -4}, {4, 10}, 20] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
PROG
(PARI) a(n)=2*4^n+2 \\ Charles R Greathouse IV, Feb 28 2017
(PARI) Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
(Python)
def a(n): return 2*4**n + 2
print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 29 2021
KEYWORD
nonn,easy
AUTHOR
Peter M. Chema, Feb 28 2017
EXTENSIONS
Entry revised by Editors of OEIS, Mar 01 2017
STATUS
approved