|
|
A283070
|
|
Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.
|
|
3
|
|
|
4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Tetrix
|
|
FORMULA
|
G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
|
|
MATHEMATICA
|
CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
|
|
PROG
|
(PARI) Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
(Python)
def a(n): return 2*4**n + 2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Entry revised by Editors of OEIS, Mar 01 2017
|
|
STATUS
|
approved
|
|
|
|