login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A380322
a(n) is the sum of exponentially odd divisors of n^2.
0
1, 3, 4, 11, 6, 12, 8, 43, 31, 18, 12, 44, 14, 24, 24, 171, 18, 93, 20, 66, 32, 36, 24, 172, 131, 42, 274, 88, 30, 72, 32, 683, 48, 54, 48, 341, 38, 60, 56, 258, 42, 96, 44, 132, 186, 72, 48, 684, 351, 393, 72, 154, 54, 822, 72, 344, 80, 90, 60, 264, 62, 96, 248
OFFSET
1,2
COMMENTS
The number of exponentially odd divisors of n^2 is equal to the number of divisors of n, A000005(n).
LINKS
FORMULA
a(n) = A033634(A000290(n)) = A033634(n^2).
a(n) >= A000203(n), with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(2*e+1) - p)/(p^2 - 1) + 1.
Dirichlet g.f.: zeta(s-2) * zeta(s) * Product_{p prime} (1 - 1/p^(s-2) + 1/p^(s-1)).
MATHEMATICA
f[p_, e_] := (p^(2*e+1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e+1) - p)/(p^2 - 1) + 1); }
CROSSREFS
KEYWORD
nonn,easy,mult,new
AUTHOR
Amiram Eldar, Jan 20 2025
STATUS
approved