login
A380073
Long legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.
3
28, 40, 112, 160, 156, 204, 252, 360, 340, 345, 448, 640, 561, 744, 624, 700, 816, 1000, 861, 1008, 1440, 1360, 1380, 1173, 1624, 1372, 1645, 1581, 1404, 1729, 1836, 1960, 1792, 2560, 2244, 2268, 2976, 2496, 3240, 2800, 3060, 3105, 3264, 3577, 3285, 4000, 3816
OFFSET
1,1
COMMENTS
Corresponding hypotenuses in A380072, short legs in A380074.
Subsequence of A046084 and supersequence of A089548.
LINKS
Eric Weisstein's World of Mathematics, Pythagorean Triple
EXAMPLE
28 is in the sequence because 21^2 + 28^2 = 35^2 and 21 + 28 = 7^2.
MAPLE
# Calculates the first 10001 terms
A380073:=proc(M)
local i, m, p, q, r, v, w, L, F;
L:=[];
m:=M^2+2*M+2;
for p from 2 to M do
for q to p-1 do
if gcd(p, q)=1 and (is(p, even) or is(q, even)) then
r:=1;
for i in ifactors(p^2-q^2+2*p*q)[2] do
if is(i[2], odd) then
r:=r*i[1]
fi
od;
w:=r*(p^2+q^2);
if w<=m then
v:=r*max(p^2-q^2, 2*p*q);
L:=[op(L), seq([i^2*w, i^2*v], i=1..floor(sqrt(m/w)))]
fi
fi
od
od;
F:=[];
for i in sort(L) do
F:=[op(F), i[2]]
od;
return op(F)
end proc;
A380073(4330);
KEYWORD
nonn,new
AUTHOR
Felix Huber, Jan 18 2025
STATUS
approved