|
|
A184032
|
|
1/16 the number of (n+1) X 3 0..3 arrays with all 2 X 2 subblocks having the same four values.
|
|
1
|
|
|
28, 40, 61, 103, 181, 337, 637, 1237, 2413, 4765, 9421, 18733, 37261, 74317, 148237, 296077, 591373, 1181965, 2362381, 4723213, 9443341, 18883597, 37761037, 75515917, 151019533, 302026765, 604028941, 1208033293, 2416017421, 4831985677
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: x*(28 - 44*x - 59*x^2 + 88*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 9*2^(n/2-1) + 9*2^(n-1) + 13 for n even.
a(n) = 9*2^(n-1) + 3*2^((n+1)/2) + 13 for n odd.
(End)
|
|
EXAMPLE
|
Some solutions for 5 X 3:
..1..2..1....0..1..0....0..1..0....1..3..1....2..1..2....3..2..3....3..2..3
..0..1..0....2..3..2....1..0..1....1..0..1....3..0..3....0..3..0....2..3..2
..2..1..2....0..1..0....0..1..0....3..1..3....2..1..2....3..2..3....2..3..2
..0..1..0....3..2..3....0..1..0....0..1..0....3..0..3....3..0..3....2..3..2
..2..1..2....1..0..1....0..1..0....1..3..1....1..2..1....2..3..2....2..3..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|