OFFSET
2,5
LINKS
Stefano Spezia, Table of n, a(n) for n = 2..10371 (first 1400 rows of the triangle)
Jaba Kalita and Helen K. Saikia, A note on near harmonic divisor number and associated concepts, Palestine Journal of Mathematics, Vol. 13(4), 2024.
FORMULA
T(n, k) = denominator(n*(tau(n) - 1)/(sigma(n) - n/A027750(n, k))).
EXAMPLE
The irregular triangle begins as:
1, 1;
1, 1;
3, 5, 3;
1, 1;
1, 1, 5, 11;
1, 1;
7, 11, 13, 7;
2, 5, 2;
4, 13, 8, 17;
...
The irregular triangle of the related fractions begins as:
2, 1;
3, 1;
8/3, 8/5, 4/3;
5, 1;
3, 2, 9/5, 18/11;
7,1;
24/7, 24/11, 24/13, 12/7;
9/2, 9/5, 3/2;
15/4, 30/13, 15/8, 30/17;
...
MATHEMATICA
T[n_, k_]:=Denominator[n(DivisorSigma[0, n]-1)/(DivisorSigma[1, n]-n/Part[Divisors[n], k])]; Table[T[n, k], {n, 2, 24}, {k, DivisorSigma[0, n]}]//Flatten
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
Stefano Spezia, Jan 07 2025
STATUS
approved