login
A243533
Decimal expansion of 'c', an asymptotic constant related to a variation of the "Secretary problem" with a uniform distribution.
1
1, 3, 5, 3, 1, 3, 0, 2, 7, 2, 2, 9, 5, 9, 3, 3, 2, 8, 1, 6, 5, 2, 9, 4, 4, 0, 3, 2, 4, 9, 2, 2, 5, 9, 6, 2, 6, 9, 0, 8, 7, 9, 0, 4, 2, 4, 3, 7, 1, 9, 1, 1, 2, 6, 4, 6, 1, 2, 0, 1, 7, 2, 2, 6, 3, 3, 0, 9, 3, 7, 0, 1, 6, 4, 8, 7, 3, 5, 1, 8, 4, 2, 2, 3, 9, 6, 4, 3, 0, 6, 7, 4, 8, 6, 0, 1, 5, 4, 8, 7, 4, 6, 0, 1, 4
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 362.
LINKS
FORMULA
log(A242672).
2*Sum_{k >= 3}(log(k)/(k^2-1)) - log(2)/3.
EXAMPLE
1.3531302722959332816529440324922596269...
MATHEMATICA
digits = 65; c = 2*NSum[Log[k]/(k^2 - 1), {k, 3, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 10^4, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10, Method -> "DoubleExponential"}}] - (Log[2]/3); RealDigits[c, 10, digits] // First
CROSSREFS
Sequence in context: A351179 A076824 A103728 * A239730 A287765 A162777
KEYWORD
nonn,cons
AUTHOR
STATUS
approved