login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287765
Period 4: repeat [1, 3, 5, 3].
1
1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1
OFFSET
1,2
FORMULA
G.f.: x * (3*x^2+2*x+1) / (1-x+x^2-x^3). [Corrected by Georg Fischer, May 19 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) with a(1)=1, a(2)=3 and a(3)=5.
a(2n) = 3, a(4*n+1) = 1 and a(4*n+3) = 5.
a(n) = ((n+3) mod 4) + ((n+4) mod 4). - Aaron J Grech, Aug 30 2024
MATHEMATICA
PadRight[{}, 105, {1, 3, 5, 3}] (* or *)
f[n_] := Switch[Mod[n, 4], 0, 3, 1, 1, 2, 3, 3, 5]; Array[f, 105] (* or *)
CoefficientList[ Series[(3x^2 +2x +1)/(-x^3 +x^2 -x +1), {x, 0, 104}], x] (* or *)
LinearRecurrence[{1, -1, 1}, {1, 3, 5}, 105] (* or *)
RecurrenceTable[{a[n] == a[n - 1] - a[n - 2] + a[n - 3], a[1] == 1, a[2] == 3, a[3] == 5}, a, {n, 105}]
CROSSREFS
Inspired by the first difference of A108752.
Sequence in context: A103728 A243533 A239730 * A162777 A241014 A173454
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, May 31 2017
STATUS
approved