login
Decimal expansion of 'c', an asymptotic constant related to a variation of the "Secretary problem" with a uniform distribution.
1

%I #8 Jun 20 2017 23:27:52

%S 1,3,5,3,1,3,0,2,7,2,2,9,5,9,3,3,2,8,1,6,5,2,9,4,4,0,3,2,4,9,2,2,5,9,

%T 6,2,6,9,0,8,7,9,0,4,2,4,3,7,1,9,1,1,2,6,4,6,1,2,0,1,7,2,2,6,3,3,0,9,

%U 3,7,0,1,6,4,8,7,3,5,1,8,4,2,2,3,9,6,4,3,0,6,7,4,8,6,0,1,5,4,8,7,4,6,0,1,4

%N Decimal expansion of 'c', an asymptotic constant related to a variation of the "Secretary problem" with a uniform distribution.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 362.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.

%F log(A242672).

%F 2*Sum_{k >= 3}(log(k)/(k^2-1)) - log(2)/3.

%e 1.3531302722959332816529440324922596269...

%t digits = 65; c = 2*NSum[Log[k]/(k^2 - 1), {k, 3, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 10^4, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10, Method -> "DoubleExponential"}}] - (Log[2]/3); RealDigits[c, 10, digits] // First

%Y Cf. A054404, A242672.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Jun 06 2014