OFFSET
2,1
LINKS
Stefano Spezia, Table of n, a(n) for n = 2..10371 (first 1400 rows of the triangle)
Jaba Kalita and Helen K. Saikia, A note on near harmonic divisor number and associated concepts, Palestine Journal of Mathematics, Vol. 13(4), 2024.
FORMULA
T(n, k) = numerator(n*(tau(n) - 1)/(sigma(n) - n/A027750(n, k))).
EXAMPLE
The irregular triangle begins as:
2, 1;
3, 1;
8, 8, 4;
5, 1;
3, 2, 9, 18;
7, 1;
24, 24, 24, 12;
9, 9, 3;
15, 30, 15, 30;
...
The irregular triangle of the related fractions begins as:
2, 1;
3, 1;
8/3, 8/5, 4/3;
5, 1;
3, 2, 9/5, 18/11;
7,1;
24/7, 24/11, 24/13, 12/7;
9/2, 9/5, 3/2;
15/4, 30/13, 15/8, 30/17;
...
MATHEMATICA
T[n_, k_]:=Numerator[n(DivisorSigma[0, n]-1)/(DivisorSigma[1, n]-n/Part[Divisors[n], k])]; Table[T[n, k], {n, 2, 23}, {k, DivisorSigma[0, n]}]//Flatten
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
Stefano Spezia, Jan 07 2025
STATUS
approved