OFFSET
1,1
COMMENTS
Also, products of base lengths of Pythagorean hyperrectangles whose base lengths are distinct primes.
Observed from a sampling of values up to 10^15 that density approximately halves for each tenfold increase in a(n), though gap sizes between successive terms have high variability.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
2145 is included (as a(1), being the smallest such integer) because 2145 = 3 * 5 * 11 * 13 and 3^2 + 5^2 + 11^2 + 13^2 = 18^2.
MATHEMATICA
Select[Range[64000], CompositeQ[#]&&SquareFreeQ[#]&&IntegerQ[Sqrt[Total[First/@FactorInteger[#]^2]]]&] (* James C. McMahon, Jan 03 2025 *)
PROG
(PARI) for(t=2, 1000000, if(!issquarefree(t) || isprime(t), next); v=Vec(factor(t)); if(issquare(sum(i=1, #v[1], v[1][i]^2)), print(t)))
(PARI) list(lim)=my(v=List()); forsquarefree(n=2145, lim\1, if(issquare(norml2(n[2][, 1])) && #n[2][, 1]~>1, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 02 2025
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Charles L. Hohn, Jan 02 2025
STATUS
approved