login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379781
a(1)=1, a(2)=2; thereafter, a(n) is the final value at the bottom of the difference triangle of the sequence thus far.
1
1, 2, 1, -2, 0, 7, -14, -12, 155, -408, -364, 7693, -30940, 10712, 637701, -4224222, 9980180, 61922567, -810337234, 4100137008, -958593005, -174952472228, 1662063951016, -6944673371867, -22887336602200, 655644589917172, -5694691183524699, 19946666531550638, 176993602416669640
OFFSET
1,2
COMMENTS
The difference triangle refers to the triangular array of iterated differences.
The first term in each row of the difference triangle is the inverse binomial transform of the sequence, so the definition means the inverse binomial transform deletes term a(2) = 2.
LINKS
Neal Gersh Tolunsky, Table of n, a(n) for n = 1..595
EXAMPLE
To find a(6), we look at the first difference triangle of the first 5 terms:
1, 2, 1, -2, 0
1, -1, -3, 2
-2, -2, 5
0, 7
7
7 is the final value, so a(6)=7.
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = Sum[(-1)^(n-k+1) * Binomial[n-2, k-1] * a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Amiram Eldar, Jan 04 2025 *)
CROSSREFS
Sequence in context: A327359 A197522 A121310 * A356919 A278158 A218880
KEYWORD
sign
AUTHOR
Neal Gersh Tolunsky, Jan 02 2025
STATUS
approved