login
A356919
Number of partitions of n into 5 parts that divide n.
1
0, 0, 0, 0, 1, 1, 0, 2, 1, 2, 0, 8, 0, 1, 3, 3, 0, 6, 0, 6, 1, 0, 0, 20, 1, 0, 1, 2, 0, 14, 0, 3, 0, 0, 1, 20, 0, 0, 0, 11, 0, 8, 0, 0, 5, 0, 0, 26, 0, 2, 0, 0, 0, 7, 1, 4, 0, 0, 0, 41, 0, 0, 2, 3, 1, 2, 0, 0, 0, 5, 0, 35, 0, 0, 3, 0, 0, 2, 0, 12, 1, 0, 0, 25, 1, 0, 0, 2, 0, 23, 0, 0, 0, 0, 1, 27, 0, 1, 1, 7, 0, 1, 0, 2, 4
OFFSET
1,8
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor(n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} c(n/l) * c(n/k) * c(n/j) * c(n/i) * c(n/(n-i-j-k-l)), where c(n) = 1 - ceiling(n) + floor(n).
EXAMPLE
a(12) = 8; there are 8 ways to write 12 as the sum of 5 divisors of 12: 6+3+1+1+1 = 6+2+2+1+1 = 4+4+2+1+1 = 4+3+3+1+1 = 4+3+2+2+1 = 4+2+2+2+2 = 3+3+3+2+1 = 3+3+2+2+2.
PROG
(PARI) A356919(n, x=n, y=n, nparts=5) = if(0==nparts, (0==y), if(y<=0, 0, sumdiv(n, d, if((d<=x), A356919(n, d, y-d, nparts-1))))); \\ Antti Karttunen, Jan 13 2025
CROSSREFS
Cf. A355641.
Sequence in context: A197522 A121310 A379781 * A278158 A218880 A024356
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Sep 04 2022
EXTENSIONS
More terms from Antti Karttunen, Jan 13 2025
STATUS
approved