The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211601 a(n) = (binomial(p^n, p^(n-1)) - binomial(p^(n-1), p^(n-2))) / p^(3n-2) for p = 3. 1
 1, 2143, 39057044954221855, 507249004999029430448035076427591041390649615630234312261967 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Consider the difference between two binomials f(p,k) = binomial(p^k, p^(k-1)) - binomial(p^(k-1), p^(k-2)). A theorem from the A. I. Shirshov paper (in Russian) states: p^(3k - 3) divides f(p,k) for prime p = 2 and k > 2. p^(3k - 2) divides f(p,k) for prime p = 3 and k > 1. p^(3k - 1) divides f(p,k) for prime p > 3 and k > 1. REFERENCES D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44 LINKS D. B. Fuks and M. B. Fuks, Arithmetics of binomial coefficients, Kvant 6 (1970), 17-25. (in Russian) A. I. Shirshov, On one property of binomial coefficients, Kvant 10 (1971), 16-20. (in Russian) FORMULA a(n) = ((binomial(3^n, 3^(n-1)) - binomial(3^(n-1), 3^(n-2))) / 3^(3n-2). MATHEMATICA p = 3; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 3^(3n - 2), {n, 2, 6}] CROSSREFS Cf. A211600, A211602. Sequence in context: A116095 A347040 A252547 * A199745 A200145 A179271 Adjacent sequences: A211598 A211599 A211600 * A211602 A211603 A211604 KEYWORD nonn AUTHOR Alexander Adamchuk, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 04:28 EDT 2023. Contains 361454 sequences. (Running on oeis4.)