The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211600 a(n) = (binomial(p^n, p^(n - 1)) - binomial(p^(n - 1), p^(n - 2))) / p^(3n - 3) for p = 2. 2
 1, 25, 146745, 55927250376633, 91366371314728099305354933301689, 2750710880016902131123422793322699970110063817946068739768171777481145 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS Consider the difference between two binomials f(p,k) = binomial(p^k, p^(k - 1)) - binomial(p^(k - 1), p^(k - 2)). A theorem from the A. I. Shirshov's paper (in Russian) states: p^(3k - 3) divides f(p,k) for prime p = 2 and k > 2. p^(3k - 2) divides f(p,k) for prime p = 3 and k > 1. p^(3k - 1) divides f(p,k) for prime p > 3 and k > 1. REFERENCES D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44 LINKS D. B. Fuks and M. B. Fuks, Arithmetics of binomial coefficients, Kvant 6 (1970), 17-25. (in Russian) A. I. Shirshov, On one property of binomial coefficients, Kvant 10 (1971), 16-20. (in Russian) FORMULA a(n) = (binomial(2^n, 2^(n-1) - binomial(2^(n-1), 2^(n-2))) / 2^(3n-3). a(n) = (A037293(n) - A037293(n-1)) / 2^(3n - 3). EXAMPLE a(3) = 1 is the difference between central binomials C(8,4) - C(4,2) = 70 - 6 = 64 divided by 2^(3*2 - 3) = 64. MAPLE A211600:=n->(binomial(2^n, 2^(n - 1)) - binomial(2^(n - 1), 2^(n - 2))) / 2^(3*n - 3): seq(A211600(n), n=3..9); # Wesley Ivan Hurt, Apr 25 2017 MATHEMATICA p = 2; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 2^(3n - 3), {n, 3, 9}] CROSSREFS Cf. A037293, A211601, A211602. Sequence in context: A325215 A076445 A013835 * A068737 A151649 A122500 Adjacent sequences:  A211597 A211598 A211599 * A211601 A211602 A211603 KEYWORD nonn,easy AUTHOR Alexander Adamchuk, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 14:53 EST 2020. Contains 331049 sequences. (Running on oeis4.)