The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211600 a(n) = (binomial(p^n, p^(n-1)) - binomial(p^(n-1), p^(n-2))) / p^(3n-3) for p = 2. 2
 1, 25, 146745, 55927250376633, 91366371314728099305354933301689, 2750710880016902131123422793322699970110063817946068739768171777481145 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS Consider the difference between two binomials f(p,k) = binomial(p^k, p^(k-1)) - binomial(p^(k-1), p^(k-2)). A theorem from the A. I. Shirshov paper (in Russian) states: p^(3k - 3) divides f(p,k) for prime p = 2 and k > 2. p^(3k - 2) divides f(p,k) for prime p = 3 and k > 1. p^(3k - 1) divides f(p,k) for prime p > 3 and k > 1. REFERENCES D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44 LINKS D. B. Fuks and M. B. Fuks, Arithmetics of binomial coefficients, Kvant 6 (1970), 17-25. (in Russian) A. I. Shirshov, On one property of binomial coefficients, Kvant 10 (1971), 16-20. (in Russian) FORMULA a(n) = (binomial(2^n, 2^(n-1) - binomial(2^(n-1), 2^(n-2))) / 2^(3n-3). a(n) = (A037293(n) - A037293(n-1)) / 2^(3n - 3). EXAMPLE a(3) = 1 is the difference between central binomials C(8,4) - C(4,2) = 70 - 6 = 64 divided by 2^(3*2 - 3) = 64. MAPLE A211600:=n->(binomial(2^n, 2^(n - 1)) - binomial(2^(n - 1), 2^(n - 2))) / 2^(3*n - 3): seq(A211600(n), n=3..9); # Wesley Ivan Hurt, Apr 25 2017 MATHEMATICA p = 2; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 2^(3n - 3), {n, 3, 9}] CROSSREFS Cf. A037293, A211601, A211602. Sequence in context: A325215 A076445 A013835 * A068737 A151649 A122500 Adjacent sequences: A211597 A211598 A211599 * A211601 A211602 A211603 KEYWORD nonn,easy AUTHOR Alexander Adamchuk, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 07:34 EST 2022. Contains 358454 sequences. (Running on oeis4.)