login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378703
Primes p such that 2^(nextprime(p) - p) + p is prime.
0
3, 7, 13, 37, 43, 67, 73, 97, 139, 163, 223, 277, 283, 337, 367, 409, 463, 487, 547, 577, 643, 709, 733, 757, 787, 823, 937, 967, 1033, 1039, 1069, 1087, 1093, 1117, 1123, 1201, 1213, 1237, 1249, 1303, 1327, 1399, 1423, 1483, 1543, 1567, 1597, 1657, 1693, 1747, 1873, 1879
OFFSET
1,1
EXAMPLE
3 is in the sequence because 2^(nextprime(3) - 3) + 3 = 2^(5 - 3) + 3 = 2^2 + 3 = 4 + 3 = 7 is prime number.
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[2^(NextPrime[#]-#)+#] &] (* Stefano Spezia, Dec 06 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(2000) | IsPrime(2^(NextPrime(p)-p)+p)];
(PARI) is(k) = isprime(k) && isprime(1 << (nextprime(k+1) - k) + k); \\ Amiram Eldar, Dec 06 2024
CROSSREFS
Sequence in context: A023212 A106952 A106951 * A106057 A049492 A166283
KEYWORD
nonn,new
AUTHOR
STATUS
approved