

A049492


Primes p such that p+4 and p+16 are also primes.


15



3, 7, 13, 37, 43, 67, 97, 163, 223, 277, 463, 487, 643, 757, 823, 937, 967, 1087, 1093, 1213, 1303, 1423, 1483, 1567, 1597, 1693, 1873, 2083, 2137, 2293, 2377, 2617, 2683, 2953, 3187, 3343, 3847, 3907, 4003, 4447, 4783, 5503, 5653, 5923, 6547, 6967, 6997
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All terms > 3 are == 1 (mod 6).  Zak Seidov, Sep 05 2014


LINKS



EXAMPLE

3, 3+4 = 7, 3+16 = 19 are all primes.


MATHEMATICA

Select[Prime[Range[900]], And@@PrimeQ[#+{4, 16}]&] (* Harvey P. Dale, Jan 17 2011 *)


PROG

(PARI) lista(nn) = forprime (n=1, nn, if (isprime(n+4) && isprime(n+16), print1(n, ", "))); \\ Michel Marcus, Sep 05 2014


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



