|
|
A049492
|
|
Primes p such that p+4 and p+16 are also primes.
|
|
15
|
|
|
3, 7, 13, 37, 43, 67, 97, 163, 223, 277, 463, 487, 643, 757, 823, 937, 967, 1087, 1093, 1213, 1303, 1423, 1483, 1567, 1597, 1693, 1873, 2083, 2137, 2293, 2377, 2617, 2683, 2953, 3187, 3343, 3847, 3907, 4003, 4447, 4783, 5503, 5653, 5923, 6547, 6967, 6997
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms > 3 are == 1 (mod 6). - Zak Seidov, Sep 05 2014
|
|
LINKS
|
|
|
EXAMPLE
|
3, 3+4 = 7, 3+16 = 19 are all primes.
|
|
MATHEMATICA
|
Select[Prime[Range[900]], And@@PrimeQ[#+{4, 16}]&] (* Harvey P. Dale, Jan 17 2011 *)
|
|
PROG
|
(PARI) lista(nn) = forprime (n=1, nn, if (isprime(n+4) && isprime(n+16), print1(n, ", "))); \\ Michel Marcus, Sep 05 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|