OFFSET
1,4
COMMENTS
The inclusive version is a(n) + 2.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..12127 (between consecutive perfect powers k <= 2^27)
EXAMPLE
The composite numbers counted by a(n) cover A106543 with the following disjoint sets:
.
6
.
10 12 14 15
18 20 21 22 24
26
28 30
33 34 35
38 39 40 42 44 45 46 48
50 51 52 54 55 56 57 58 60 62 63
MATHEMATICA
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All, 2]]>1;
v=Select[Range[100], perpowQ[#]&];
Table[Length[Select[Range[v[[i]]+1, v[[i+1]]-1], CompositeQ]], {i, Length[v]-1}]
PROG
(Python)
from sympy import mobius, integer_nthroot, primepi
def A378614(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-1+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
return -(a:=bisection(f, n, n))+(b:=bisection(lambda x:f(x)+1, a+1, a+1))-primepi(b)+primepi(a)-1 # Chai Wah Wu, Dec 03 2024
CROSSREFS
For prime instead of perfect power we have A046933.
For prime instead of composite we have A080769.
For nonprime prime power instead of perfect power we have A378456.
A002808 lists the composite numbers.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A106543 lists the composite non perfect powers.
KEYWORD
nonn,new
AUTHOR
Gus Wiseman, Dec 02 2024
STATUS
approved