login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378588
Triangle read by rows: T(n,k) is the number of maximal chains in the poset of all k-ary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0.
2
1, 1, 2, 1, 5, 6, 1, 16, 22, 23, 1, 57, 94, 102, 103, 1, 226, 446, 507, 517, 518, 1, 961, 2308, 2764, 2855, 2867, 2868, 1, 4376, 12900, 16333, 17121, 17248, 17262, 17263, 1, 21041, 77092, 103666, 110487, 111739, 111908, 111924, 111925, 1, 106534, 489430, 701819, 761751, 773888, 775758, 775975, 775993, 775994, 1, 563961, 3282956, 5038344, 5578041, 5696293, 5716382, 5719046, 5719317, 5719337, 5719338
OFFSET
1,3
FORMULA
T(n,k) = T(n,n) for k > n.
EXAMPLE
Triangle begins:
k=1 2 3 4 5 6 7
n=1 1;
n=2 1, 2;
n=3 1, 5, 6;
n=4 1, 16, 22, 23;
n=5 1, 57, 94, 102, 103;
n=6 1, 226, 446, 507, 517, 518;
n=7 1, 961, 2308, 2764, 2855, 2867, 2868;
...
T(3,3) = 6:
() < (1) < (1,1) < (1,1,1),
() < (1) < (1,1) < (1,2),
() < (1) < (1,1) < (2,1),
() < (1) < (2) < (1,2),
() < (1) < (2) < (2,1),
() < (1) < (2) < (3).
PROG
(Python)
def mchains(n, k):
B, d1, S1 = [1, 1], {(1, ): 1}, {(1, )}
for i in range(n-1):
d2, S2 = dict(), set()
for j in S1:
for x in [j+(1, ), (1, )+j]+[j[:z]+tuple([j[z]+1])+j[z+1:] for z in range(len(j)) if j[z] < k]:
if x not in S2: S2.add(x); d2[x] = d1[j]
elif x != tuple([1]*(i+2)): d2[x] += d1[j]
B.append(sum(d2.values())); d1 = d2; S1 = S2
return B[:n+1]
def A378588_list(max_n):
B = [mchains(max_n, i+1) for i in range(max_n)]
return [[B[k][j+1] for k in range(j+1)] for j in range(max_n)]
CROSSREFS
Cf. A034841, A143672, A282698, A317145, column k=2 A378382, main daigonal A378608.
Sequence in context: A217204 A179455 A039810 * A328297 A124575 A178121
KEYWORD
nonn,tabl
AUTHOR
John Tyler Rascoe, Dec 01 2024
STATUS
approved