login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282698
Irregular triangle read by rows: row n gives numbers of maximal chains of lengths n-1, n, n+1, ... in the Tamari lattice T_n.
7
1, 1, 1, 1, 1, 4, 2, 2, 1, 10, 22, 22, 18, 13, 12, 1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286, 1, 35, 392, 1744, 4474, 8435, 12732, 17337, 21158, 27853, 33940, 41230, 45048, 50752, 41826, 33592, 1, 56, 1092, 9220, 40414, 123704, 276324, 550932, 917884
OFFSET
1,6
COMMENTS
Nelson (2017) gives first nine columns of the transposed triangle.
LINKS
Luke Nelson, A recursion on maximal chains in the Tamari lattices, Discrete Mathematics 340.4 (2017): 661-677.
Luke Nelson, A recursion on maximal chains in the Tamari lattices, arXiv:1709.02987 [math.CO], (2017)
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 4, 2, 2;
1, 10, 22, 22, 18, 13, 12;
1, 20, 112, 232, 382, 348, 456, 390, 420, 334, 286;
...
The transposed triangle, as given by Nelson, begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 4, 10, 20, 35, 56, 84, ...
2, 22, 112, 392, 1092, 2604, ...
2, 22, 232, 1744, 9220, 37444, ...
18, 382, 4474, 40414, 280214, ...
13, 348, 8435, 123704, 1321879, ...
12, 456, 12732, 276324, 4578596, ...
390, 17337, 550932, 12512827, ...
420, 21158, 917884, 29499764, ...
334, 27853, 1510834, 62132126, ...
286, 33940, 2166460, 120837274, ...
41230, 3370312, 221484557, ...
45048, 4810150, 393364848, ...
50752, 7264302, 666955139, ...
41826, 10435954, 1134705692, ...
33592, 15227802, 1933708535, ...
...
MAPLE
s:= proc(n) s(n):=`if`(n=0, [], [s(n-1), []]) end:
f:= l-> l=[] or l[1]=[] and f(l[2]):
v:= proc(l) v(l):=`if`(f(l), [], [`if`(l[1]<>[],
[l[1][1], [l[1][2], l[2]]], [][]),
seq([w, l[2]], w=v(l[1])), seq([l[1], w], w=v(l[2]))])
end:
p:= proc(l) p(l):=`if`(f(l), 1, add(expand(x*p(w)), w=v(l))) end:
T:= n-> (h-> seq(coeff(h, x, i), i=ldegree(h)..degree(h)))(p(s(n))):
seq(T(n), n=1..8); # Alois P. Heinz, Jan 02 2018
CROSSREFS
Row sums give A027686.
Right border gives A003121(n-1).
Sequence in context: A071558 A179621 A350788 * A136709 A254969 A137239
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Feb 25 2017
EXTENSIONS
More terms from Alois P. Heinz, Jan 02 2018
STATUS
approved